1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
-- | Shaping for a paragraph of plain, unidirectional text using a single font.
--
-- The input text must be encoded as UTF-8 in a contiguous byte array.
--
-- Positions and distances are represented as 32-bit integers. Their unit must
-- be defined by the caller, who must calculate the desired dimensions of the
-- EM square of the input font and set them using @hb_font_set_scale()@. For
-- example, if @1em = 20px@, if the output pixels are square, and if the output
-- coordinates are in 1/64ths of a pixel, you should set both the @x_scale@ and
-- the @y_scale@ to @1280@.
module Data.Text.ParagraphLayout.Plain
(LineHeight(..)
,Paragraph(..)
,ParagraphLayout(..)
,ParagraphOptions(..)
,Rect(..)
,Span(..)
,SpanLayout(..)
,layoutPlain
)
where
import Data.Int (Int32)
import Data.List (mapAccumL)
import Data.Text.Array (Array)
import Data.Text.Foreign (I8, lengthWord8)
import Data.Text.Glyphize
(Buffer(..)
,ContentType(ContentTypeUnicode)
,Font
,FontExtents(..)
,GlyphInfo
,GlyphPos(x_advance)
,defaultBuffer
,fontExtentsForDir
,shape
)
import Data.Text.Internal (Text(Text))
import qualified Data.Text.Lazy as Lazy
import Data.Text.ParagraphLayout.Fragment
import Data.Text.ParagraphLayout.LineHeight
import qualified Data.Text.ParagraphLayout.ProtoFragment as PF
import Data.Text.ParagraphLayout.Rect
import qualified Data.Text.ParagraphLayout.ResolvedSpan as RS
import Data.Text.ParagraphLayout.Run
import Data.Text.ParagraphLayout.Span
import Data.Text.ParagraphLayout.TextContainer
-- | Text to be laid out as a paragraph.
--
-- May be divided into any number of neighbouring spans, each of which will
-- have its own layout rectangle(s) calculated.
data Paragraph = Paragraph
Array
-- ^ A byte array containing the whole text to be laid out, in UTF-8.
I8
-- ^ Byte offset of the first span.
-- Any characters preceding this offset will not be shaped, but may still
-- be used to influence the shape of neighbouring characters.
[Span]
-- ^ Parts of the text to be laid out, in logical order.
-- The offset plus total length of all spans must not exceed array bounds.
-- Any characters following the last span will not be shaped, but may still
-- be used to influence the shape of neighbouring characters.
ParagraphOptions
-- ^ Properties applying to the paragraph as a whole.
data ParagraphOptions = ParagraphOptions
{ paragraphFont :: Font
, paragraphLineHeight :: LineHeight
, paragraphMaxWidth :: Int32
}
-- | The resulting layout of the whole paragraph.
data ParagraphLayout = ParagraphLayout
{ paragraphRect :: Rect Int32
-- ^ The containing block (CSS3).
, spanLayouts :: [SpanLayout]
}
deriving (Eq, Read, Show)
-- | The resulting layout of each span, which may include multiple fragments if
-- broken over multiple lines.
data SpanLayout = SpanLayout [Fragment]
deriving (Eq, Read, Show)
-- | Wrapper for temporarily mapping the relationship to a `Span`.
data WithSpan a = WithSpan RS.ResolvedSpan a
instance Functor WithSpan where
fmap f (WithSpan s a) = WithSpan s (f a)
instance TextContainer a => TextContainer (WithSpan a) where
getText (WithSpan _ c) = getText c
setText t (WithSpan rs c) = WithSpan rs (setText t c)
splitBySpanIndex :: [WithSpan a] -> [[a]]
splitBySpanIndex xs = [getBySpanIndex i xs | i <- [0..]]
getBySpanIndex :: Int -> [WithSpan a] -> [a]
getBySpanIndex idx xs = map contents $ filter matchingIndex $ xs
where
matchingIndex (WithSpan rs _) = (RS.spanIndex rs) == idx
contents (WithSpan _ x) = x
spanRects :: SpanLayout -> [Rect Int32]
spanRects (SpanLayout frags) = map fragmentRect frags
base :: (Num a) => Rect a
base = Rect 0 0 0 0
containRects :: (Ord a, Num a) => [Rect a] -> Rect a
containRects = foldr union base
-- | Interface for basic plain text layout.
--
-- The entire paragraph will be assumed to have the same text direction and
-- will be shaped using a single font, starting from the left for LTR text or
-- from the right for RTL text.
layoutPlain :: Paragraph -> ParagraphLayout
layoutPlain p@(Paragraph _ _ _ opts) = ParagraphLayout pRect sls
where
pRect = containRects $ concat $ map spanRects sls
sls = map SpanLayout fragsBySpan
fragsBySpan = take (length spans) $ splitBySpanIndex frags
frags = layoutAndAlignLines maxWidth $ spansToRunsWrapped spans
maxWidth = paragraphMaxWidth opts
spans = resolveSpans p
-- | Split a number of spans into a flat array of runs and add a wrapper
-- so that each run can be traced back to its originating span.
spansToRunsWrapped :: [RS.ResolvedSpan] -> [WithSpan Run]
spansToRunsWrapped ss = concat $ map spanToRunsWrapped ss
-- | Split a span into runs and add a wrapper
-- so that each run can be traced back to its originating span.
spanToRunsWrapped :: RS.ResolvedSpan -> [WithSpan Run]
spanToRunsWrapped s = map (WithSpan s) (spanToRuns s)
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a flat list of fragments positioned in both dimensions.
layoutAndAlignLines :: Int32 -> [WithSpan Run] -> [WithSpan Fragment]
layoutAndAlignLines maxWidth runs = frags
where
frags = concat fragsInLines
(_, fragsInLines) = mapAccumL alignLineH originY protoFragsInLines
protoFragsInLines = layoutLines maxWidth runs
originY = 0
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a two-dimensional list of fragments positioned along the
-- horizontal axis.
layoutLines :: Int32 -> [WithSpan Run] -> [[WithSpan PF.ProtoFragment]]
layoutLines maxWidth runs
| null rest
-- Everything fits. We are done.
= fitting : []
| null fitting
-- Nothing fits. We must resolve this by overflowing.
= overflowing : []
| otherwise
-- Something fits, the rest goes on the next line.
= fitting : layoutLines maxWidth rest
where
(fitting, rest) = tryAddRunsH maxWidth originX runs
overflowing = addRunsH originX runs
originX = 0
-- TODO: Allow a run across multiple spans (e.g. if they only differ by colour).
-- | Align all the given horizontal fragments vertically on the same line,
-- using `originY` as its top edge, and return the bottom edge for continuation.
--
-- Glyphs will be aligned by their ascent line, similar to the behaviour of
-- @vertical-align: top@ in CSS.
--
-- TODO: For rich text, allow other types of vertical alignment.
alignLineH :: Int32 -> [WithSpan PF.ProtoFragment] ->
(Int32, [WithSpan Fragment])
alignLineH originY pfs = (nextY, frags)
where
nextY = maximum $ map y_min rects
rects = map (\(WithSpan _ r) -> fragmentRect r) frags
frags = map (alignFragmentH originY) pfs
-- | Align the given horizontal fragment vertically on a line,
-- using `originY` as its top edge.
alignFragmentH :: Int32 -> WithSpan PF.ProtoFragment -> WithSpan Fragment
alignFragmentH originY (WithSpan rs pf) =
WithSpan rs (Fragment rect (penX, penY) (PF.glyphs pf))
where
rect = Rect (PF.offset pf) originY (PF.advance pf) (-lineHeight)
penX = 0
penY = descent + leading `div` 2 - lineHeight
lineHeight = case RS.spanLineHeight rs of
Normal -> normalLineHeight
Absolute h -> h
leading = lineHeight - normalLineHeight
normalLineHeight = ascent + descent
ascent = ascender extents
descent = - descender extents
extents = fontExtentsForDir font (PF.direction pf)
font = RS.spanFont rs
-- | Like `addRunsH`, but break the input runs as necessary to prevent
-- overflowing the maximum line width,
-- and return the remaining runs to be placed on other lines.
tryAddRunsH :: Int32 -> Int32 -> [WithSpan Run] ->
([WithSpan PF.ProtoFragment], [WithSpan Run])
tryAddRunsH maxWidth currentX runs =
tryAddSplitRunsH maxWidth currentX runs totalLength
where
totalLength = fromIntegral $ sum $ map (lengthWord8 . getText) runs
-- | Like `addRunsH`, but break the input runs at the given position, or closer
-- to the start if necessary to prevent overflowing the maximum line width,
-- and return the remaining runs to be placed on other lines.
tryAddSplitRunsH :: Int32 -> Int32 -> [WithSpan Run] -> I8 ->
([WithSpan PF.ProtoFragment], [WithSpan Run])
tryAddSplitRunsH _ _ [] _ = ([], [])
tryAddSplitRunsH _ currentX runs 0 = do
-- Last resort splitting by character.
-- TODO: Split by glyph instead.
-- Note: The following auto-adjusts to UTF-8 code point boundary.
let (runs1, runs2) = splitTextsAt8 1 runs
let (_, pfs) = mapAccumL addRunH currentX runs1
(pfs, runs2)
tryAddSplitRunsH maxWidth currentX runs splitPoint = do
let (runs1, runs2) = splitTextsAt8 splitPoint runs
let (nextX, pfs) = mapAccumL addRunH currentX runs1
if abs nextX <= maxWidth
then (pfs, runs2)
-- TODO: Use ICU breaking library.
else tryAddSplitRunsH maxWidth currentX runs (splitPoint-1)
-- | Calculate layout for multiple runs on the same line and
-- arrange them in one horizontal direction starting from the given x_offset.
addRunsH :: Int32 -> [WithSpan Run] -> [WithSpan PF.ProtoFragment]
addRunsH currentX runs = snd $ mapAccumL addRunH currentX runs
-- | Calculate layout for the given run,
-- place the generated fragment horizontally at the given x_offset in a line,
-- and return the final x_offset for continuation.
addRunH :: Int32 -> WithSpan Run -> (Int32, WithSpan PF.ProtoFragment)
addRunH currentX run = (nextX, WithSpan rs pf)
where
WithSpan rs pf = layoutRun currentX run
nextX = currentX + PF.advance pf
-- | Calculate layout for the given run and position it in a line.
layoutRun :: Int32 -> WithSpan Run -> WithSpan PF.ProtoFragment
layoutRun originX (WithSpan rs run) = WithSpan rs pf
where
pf = PF.ProtoFragment dir originX totalX glyphs
glyphs = shapeRun (WithSpan rs run)
positions = map snd glyphs
totalX = sum $ map x_advance positions
dir = runDirection run
-- | Calculate layout for the given run independently of its position.
shapeRun :: WithSpan Run -> [(GlyphInfo, GlyphPos)]
shapeRun (WithSpan rs run) = shape font buffer features
where
font = RS.spanFont rs
-- TODO: Set beginsText / endsText.
buffer = defaultBuffer
{ text = Lazy.fromStrict $ runText run
, contentType = Just ContentTypeUnicode
, direction = runDirection run
, script = runScript run
, language = Just $ RS.spanLanguage rs
}
features = []
resolveSpans :: Paragraph -> [RS.ResolvedSpan]
resolveSpans (Paragraph arr off spans opts) = do
let texts = cuts arr off spans
let indexes = [0..]
(s, t, i) <- zip3 spans texts indexes
return RS.ResolvedSpan
{ RS.spanIndex = i
, RS.spanText = t
, RS.spanFont = paragraphFont opts
, RS.spanLineHeight = paragraphLineHeight opts
, RS.spanLanguage = spanLanguage s
}
-- | Produce a list of `Text`s, defined by an initial offset and a list of
-- consecutive `Span`s, out of the underlying `Array`.
--
-- TODO: Consider adding checks for array bounds.
cuts :: Array -> I8 -> [Span] -> [Text]
cuts arr initialOffset spans = snd $ mapAccumL (cut arr) initialOffset spans
-- | Produce a `Text`, defined by an initial offset and a `Span`, out of the
-- underlying `Array`.
cut :: Array -> I8 -> Span -> (I8, Text)
cut arr off s = (end, t)
where
len = spanLength s
end = off + len
t = Text arr (fromIntegral off) (fromIntegral len)