1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
-- | Shaping for a paragraph of plain, unidirectional text using a single font.
--
-- The input text must be encoded as UTF-8 in a contiguous byte array.
--
-- Positions and distances are represented as 32-bit integers. Their unit must
-- be defined by the caller, who must calculate the desired dimensions of the
-- EM square of the input font and set them using @hb_font_set_scale()@. For
-- example, if @1em = 20px@, if the output pixels are square, and if the output
-- coordinates are in 1/64ths of a pixel, you should set both the @x_scale@ and
-- the @y_scale@ to @1280@.
module Data.Text.ParagraphLayout.Plain
(LineHeight(..)
,Paragraph(..)
,ParagraphLayout(..)
,ParagraphOptions(..)
,Rect(..)
,Span(..)
,SpanLayout(..)
,layoutPlain
)
where
import Data.Int (Int32)
import Data.List (mapAccumL)
import Data.Text.Array (Array)
import Data.Text.Foreign (I8)
import Data.Text.Glyphize
(Buffer(..)
,ContentType(ContentTypeUnicode)
,Font
,FontExtents(..)
,GlyphInfo
,GlyphPos(x_advance)
,defaultBuffer
,fontExtentsForDir
,shape
)
import Data.Text.Internal (Text(Text))
import qualified Data.Text.Lazy as Lazy
import Data.Text.ParagraphLayout.Fragment
import Data.Text.ParagraphLayout.LineHeight
import qualified Data.Text.ParagraphLayout.ProtoFragment as PF
import Data.Text.ParagraphLayout.Rect
import qualified Data.Text.ParagraphLayout.ResolvedSpan as RS
import Data.Text.ParagraphLayout.Run
import Data.Text.ParagraphLayout.Span
import Data.Text.ParagraphLayout.TextContainer
-- | Text to be laid out as a paragraph.
--
-- May be divided into any number of neighbouring spans, each of which will
-- have its own layout rectangle(s) calculated.
data Paragraph = Paragraph
Array
-- ^ A byte array containing the whole text to be laid out, in UTF-8.
I8
-- ^ Byte offset of the first span.
-- Any characters preceding this offset will not be shaped, but may still
-- be used to influence the shape of neighbouring characters.
[Span]
-- ^ Parts of the text to be laid out, in logical order.
-- The offset plus total length of all spans must not exceed array bounds.
-- Any characters following the last span will not be shaped, but may still
-- be used to influence the shape of neighbouring characters.
ParagraphOptions
-- ^ Properties applying to the paragraph as a whole.
data ParagraphOptions = ParagraphOptions
{ paragraphFont :: Font
, paragraphLineHeight :: LineHeight
, paragraphMaxWidth :: Int32
}
-- | The resulting layout of the whole paragraph.
data ParagraphLayout = ParagraphLayout
{ paragraphRect :: Rect Int32
-- ^ The containing block (CSS3).
, spanLayouts :: [SpanLayout]
}
deriving (Eq, Read, Show)
-- | The resulting layout of each span, which may include multiple fragments if
-- broken over multiple lines.
data SpanLayout = SpanLayout [Fragment]
deriving (Eq, Read, Show)
-- | Wrapper for temporarily mapping the relationship to a `Span`.
data WithSpan a = WithSpan RS.ResolvedSpan a
instance Functor WithSpan where
fmap f (WithSpan s a) = WithSpan s (f a)
instance TextContainer a => TextContainer (WithSpan a) where
getText (WithSpan _ c) = getText c
setText t (WithSpan rs c) = WithSpan rs (setText t c)
splitBySpanIndex :: [WithSpan a] -> [[a]]
splitBySpanIndex xs = [getBySpanIndex i xs | i <- [0..]]
getBySpanIndex :: Int -> [WithSpan a] -> [a]
getBySpanIndex idx xs = map contents $ filter matchingIndex $ xs
where
matchingIndex (WithSpan rs _) = (RS.spanIndex rs) == idx
contents (WithSpan _ x) = x
spanRects :: SpanLayout -> [Rect Int32]
spanRects (SpanLayout frags) = map fragmentRect frags
base :: (Num a) => Rect a
base = Rect 0 0 0 0
containRects :: (Ord a, Num a) => [Rect a] -> Rect a
containRects = foldr union base
-- | Interface for basic plain text layout.
--
-- The entire paragraph will be assumed to have the same text direction and
-- will be shaped using a single font, aligned to the left for LTR text or to
-- the right for RTL text.
layoutPlain :: Paragraph -> ParagraphLayout
layoutPlain paragraph = ParagraphLayout pRect layouts
where
pRect = containRects allRects
allRects = concat $ map spanRects layouts
layouts = layoutSpans $ resolveSpans paragraph
layoutSpans :: [RS.ResolvedSpan] -> [SpanLayout]
layoutSpans spans = map SpanLayout fragsBySpan
where
fragsBySpan = take (length spans) $ splitBySpanIndex indexedPfs
indexedPfs = layoutSingleLine $ concat $ map spanToRunsWrapped spans
spanToRunsWrapped :: RS.ResolvedSpan -> [WithSpan Run]
spanToRunsWrapped s = map (WithSpan s) (spanToRuns s)
-- TODO: Break lines.
layoutSingleLine :: [WithSpan Run] -> [WithSpan Fragment]
layoutSingleLine runs = indexedFrags
where
indexedFrags = map (alignFragmentH originY) pfs
pfs = addRunsH originX runs
originX = 0
originY = 0
-- TODO: Allow a run across multiple spans (e.g. if they only differ by colour).
-- | Align the given horizontal fragment vertically on a line,
-- using `originY` as its bottom edge.
alignFragmentH :: Int32 -> WithSpan PF.ProtoFragment -> WithSpan Fragment
alignFragmentH originY (WithSpan rs pf) = WithSpan rs (Fragment rect (penX, penY) (PF.glyphs pf))
where
rect = Rect (PF.offset pf) originY (PF.advance pf) lineHeight
penX = 0
penY = descent + leading `div` 2
lineHeight = case RS.spanLineHeight rs of
Normal -> normalLineHeight
Absolute h -> h
leading = lineHeight - normalLineHeight
normalLineHeight = ascent + descent
ascent = ascender extents
descent = - descender extents
extents = fontExtentsForDir font (PF.direction pf)
font = RS.spanFont rs
-- | Calculate layout for multiple runs on the same line,
-- arrange them in one horizontal direction starting from the given x_offset.
addRunsH :: Int32 -> [WithSpan Run] -> [WithSpan PF.ProtoFragment]
addRunsH currentX runs = snd $ mapAccumL addRunH currentX runs
-- | Calculate layout for the given run,
-- place the generated fragment horizontally at the given x_offset in a line,
-- and return the final x_offset for continuation.
addRunH :: Int32 -> WithSpan Run -> (Int32, WithSpan PF.ProtoFragment)
addRunH currentX run = (nextX, WithSpan rs pf)
where
WithSpan rs pf = layoutRun currentX run
nextX = currentX + PF.advance pf
-- | Calculate layout for the given run and position it in a line.
layoutRun :: Int32 -> WithSpan Run -> WithSpan PF.ProtoFragment
layoutRun originX (WithSpan rs run) = WithSpan rs pf
where
pf = PF.ProtoFragment dir originX totalX glyphs
glyphs = shapeRun (WithSpan rs run)
positions = map snd glyphs
totalX = sum $ map x_advance positions
dir = runDirection run
-- | Calculate layout for the given run independently of its position.
shapeRun :: WithSpan Run -> [(GlyphInfo, GlyphPos)]
shapeRun (WithSpan rs run) = shape font buffer features
where
font = RS.spanFont rs
-- TODO: Set beginsText / endsText.
buffer = defaultBuffer
{ text = Lazy.fromStrict $ runText run
, contentType = Just ContentTypeUnicode
, direction = runDirection run
, script = runScript run
, language = Just $ RS.spanLanguage rs
}
features = []
resolveSpans :: Paragraph -> [RS.ResolvedSpan]
resolveSpans (Paragraph arr off spans opts) = do
let texts = cuts arr off spans
let indexes = [0..]
(s, t, i) <- zip3 spans texts indexes
return RS.ResolvedSpan
{ RS.spanIndex = i
, RS.spanText = t
, RS.spanFont = paragraphFont opts
, RS.spanLineHeight = paragraphLineHeight opts
, RS.spanLanguage = spanLanguage s
}
-- | Produce a list of `Text`s, defined by an initial offset and a list of
-- consecutive `Span`s, out of the underlying `Array`.
--
-- TODO: Consider adding checks for array bounds.
cuts :: Array -> I8 -> [Span] -> [Text]
cuts arr initialOffset spans = snd $ mapAccumL (cut arr) initialOffset spans
-- | Produce a `Text`, defined by an initial offset and a `Span`, out of the
-- underlying `Array`.
cut :: Array -> I8 -> Span -> (I8, Text)
cut arr off s = (end, t)
where
len = spanLength s
end = off + len
t = Text arr (fromIntegral off) (fromIntegral len)