~alcinnz/amphiarao

ref: c2bd1a216e8d50e7795404017c350b6a6839b189 amphiarao/src/Internal/Elements/XPath.hs -rw-r--r-- 28.5 KiB
c2bd1a21 — Adrian Cochrane Add initial form support 3 years ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
{-# LANGUAGE OverloadedStrings #-}
module Internal.Elements.XPath where

import Internal.Elements.XPathParse
import qualified Data.Text as Txt
import Data.Text (Text)

import Text.XML.Cursor hiding (bool)
import Text.XML
import qualified Data.Map.Strict as M

import Data.Time
import Data.Maybe
import Data.Either
import Data.List (nub)
import Text.Read (readMaybe)

-- Loosely transliterated from https://www.w3.org/TR/xpath-3/#eval_context
-- TODO How much are noops?
data Context = Context {
        item :: [Value],
        vars :: M.Map Name [Value],
        funcs :: M.Map (Name, Int) (Context -> [[Value]] -> [Value])
    }

---- Typesystem/coercion

atomize :: Value -> [Value]
atomize ret@(Number _) = [ret]
atomize ret@(String _) = [ret]
atomize ret@(Bool _) = [ret]
atomize ret@(Error _ _ _) = [ret]
atomize (Node n) = [String $ Txt.unpack $ nodeText $ node n] -- For a proper implementation, should be parsed via XSD?
atomize (Array vals) = atomsize $ concat vals
atomize (Map _) = [Error "err:FOTY0013" "Unnaceptable map item" ""]
atomize (Function _ _ _ _) = [Error "err:FOTY0013" "Unacceptable function item" ""]
atomize (FuncRef _ _) = [Error "err:FOTY0013" "Unacceptable function item" ""]
atomsize :: [Value] -> [Value]
atomsize = concatMap atomize

nodeText (NodeElement (Element _ _ nodes)) = Txt.concat $ map nodeText' nodes
nodeText (NodeInstruction (Instruction _ ret)) = ret
nodeText (NodeContent ret) = ret
nodeText (NodeComment ret) = ret
nodeText' (NodeElement (Element _ _ nodes)) = Txt.concat $ map nodeText' nodes
nodeText' (NodeContent ret) = ret
nodeText' _ = ""

maybeName (NodeElement (Element n _ _)) = n
maybeName _ = ""

nameMatch (Name "*" (Just "*") (Just "*")) _ = True
nameMatch (Name "*" (Just "*") (Just prefixA)) (Name _ _ (Just prefixB)) = prefixA == prefixB
nameMatch (Name "*" Nothing (Just prefixA)) (Name _ _ (Just prefixB)) = prefixA == prefixB
nameMatch (Name "*" (Just "*") Nothing) (Name _ _ prefix) = isNothing prefix
nameMatch (Name "*" (Just nsA) _) (Name _ (Just nsB) _) = nsA == nsB
nameMatch (Name "*" Nothing _) (Name _ ns _) = isNothing ns
nameMatch (Name nameA (Just "*") (Just "*")) (Name nameB _ _) = nameA == nameB
nameMatch (Name nameA (Just "*") (Just prefixA)) (Name nameB _ (Just prefixB)) = nameA == nameB && prefixA == prefixB
nameMatch (Name nameA Nothing (Just prefixA)) (Name nameB _ (Just prefixB)) = nameA == nameB && prefixA == prefixB
nameMatch (Name nameA (Just "*") Nothing) (Name nameB _ prefix) = nameA == nameB && isNothing prefix
nameMatch (Name nameA (Just nsA) _) (Name nameB (Just nsB) _) = nameA == nameB && nsA == nsB
nameMatch (Name nameA Nothing _) (Name nameB ns _) = nameA == nameB && isNothing ns
nameMatch _ _ = False

hasName name node = nameMatch (maybeName node) name

attribute' name (NodeElement (Element _ attrs _)) =
    [String $ Txt.unpack val | (key, val) <- M.toList attrs, nameMatch name key]
attribute' _ _ = []

bool [] = Right False
bool (Node _:_) = Right True
bool [Bool ret] = Right ret
bool [String ret] = Right $ not $ null ret
bool [Number x] = Right $ not (isNaN x || x == 0)
bool vals | ret@(_:_) <- [err | err@(Error _ _ _) <- vals] = Left ret
bool (val:_) = Left [Error "err:FORG0006" "Invalid argument type" $ show $ val2type val]

nums items | ret@(_:_) <- [err | err@(Error _ _ _) <- items] = Left ret
nums (Number x:items) = (x:) <$> nums items
nums (String str:items) | Just x <- readMaybe str = (x:) <$> nums items
    | otherwise = Left [Error "err:FORG0001" "Invalid cast to number" str]
nums (Bool True:items) = (1:) <$> nums items
nums (Bool False:items) = (0:) <$> nums items
nums [] = Right []
nums items = nums $ atomsize items
num items = case nums items of
    Left errs -> Left errs
    Right (x:_) -> Right x
    Right [] -> Right (0/0) -- NaN

withNums2 x y cb = withNums2' (nums x) (nums y) cb
withNums2' (Right xs) (Right ys) cb = cb xs ys
withNums2' x y _ = fromLeft [] x ++ fromLeft [] y
withNum2 x y cb = withNum2' (num x) (num y) cb
withNum2' (Right x) (Right y) cb = cb x y
withNum2' x y _ = fromLeft [] x ++ fromLeft [] y

text :: [Value] -> Either [Value] [String]
text items | ret@(_:_) <- [err | err@(Error _ _ _) <- items] = Left ret
text (Number x:items) = (show x:) <$> text items
text (String ret:items) = (ret:) <$> text items
text (Bool b:items) = (show b:) <$> text items
text [] = Right []
text items = text $ atomsize items

---Type system

cast (TypeAtomic ty) [x]
    | ty `elem` ["xsd:integer", "xsd:float", "xsd:double", "xsd:decimal"], Right x <- num [x] = [Number x]
    | ty == "xsd:bool", Right b <- bool [x] = [Bool b]
    | Right [str] <- text [x] = [String str]
cast TypeText [x] | Right [str] <- text [x] = [String str]
cast ty [_] = [Error "err:XPTY0004" "Invalid type to cast to." $ show ty]
cast _ [] = []
cast _ items = [Error "err:XPTY0004" "Too many items in cast." $ show $ length items]
cast' :: Quantity -> [Value] -> [Value]
cast' ty val | instanceOf' ty val = val
cast' (Quantity ty _ Many) _ = [Error "err:XPDY0050" "Can't cast to non-optional multiplicity" ""]
cast' (Quantity ty _ None) _ = []
cast' (Quantity ty Many One) _ = [Error "err:XPDY0050" "Can't cast to non-optional multiplicity" ""]
cast' (Quantity ty One One) val | null $ cast ty $ atomsize val = cast ty $ atomsize val
    | otherwise = [Error "err:XPTY0004" "Expected non-zero items in value." "0"]
cast' (Quantity ty None One) val = cast ty $ atomsize val
tryCast' (Just ty) val = let val' = cast (TypeAtomic ty) [val] in if any isErr val' then [] else val'
tryCast' Nothing val = [val]

instanceOf :: XType -> Value -> Bool
instanceOf (TypeDocument type_) (Node cursor) | null $ ancestor cursor = instanceOf type_ $ Node cursor
instanceOf (TypeElement (Just name) type_) (Node cursor)
    | NodeElement (Element n _ _) <- node cursor = instanceOf (TypeElement Nothing type_) $ Node cursor
instanceOf (TypeElement Nothing (Just "xsd:bool")) val
    | Right res <- text [val] = res `elem` [["true"], ["false"]]
instanceOf (TypeElement Nothing (Just "xsd:integer")) val
    | Right x <- num [val] = fromIntegral (floor x) == x
instanceOf (TypeElement Nothing (Just type_)) val
    | type_ `elem` ["xsd:double", "xsd:float", "xsd:decimal"] = isRight $ num [val]
    | otherwise = True
instanceOf (TypeArray Nothing) (Array _) = True
instanceOf (TypeArray (Just type_)) (Array vals) = all (instanceOf' type_) vals
instanceOf (TypeMap Nothing') (Map _) = True
instanceOf (TypeMap (Some' _ valType)) (Map m) = all (instanceOf' valType) $ M.elems m -- TODO check keytype
instanceOf (TypeFunction Nothing') (Array _) = True
instanceOf (TypeFunction Nothing') (Map _) = True
instanceOf (TypeFunction Nothing') (PartialFunc _ _) = True
instanceOf (TypeFunction Nothing') (FuncRef _ _) = True
instanceOf (TypeFunction Nothing') (Function _ _ _ _) = True
instanceOf (TypeFunction (Some' [Quantity (TypeAtomic "xsd:integer") One One] retty)) (Array vals) =
    all (instanceOf' retty) vals
instanceOf (TypeFunction (Some' [Quantity (TypeAtomic _) One One] retty)) (Map m) =
    all (instanceOf' retty) $ M.elems m
instanceOf (TypeFunction (Some' [Quantity TypeText One One] retty)) (Map m) =
    all (instanceOf' retty) $ M.elems m
-- FIXME doesn't actually check types, that requires deeper introspection than I currently model.
instanceOf (TypeFunction (Some' argtys _)) (PartialFunc args _) = length argtys == length args
instanceOf (TypeFunction (Some' argtys _)) (FuncRef _ nargs) = length argtys == nargs
instanceOf (TypeFunction (Some' argtys retty)) (Function args retty' _ _) =
    retty == retty' && and [ty == ty' | (ty, (_, ty')) <- zip argtys args]
instanceOf (TypeSchemaElement _) _ = False -- TODO What's this?
instanceOf TypeNode (Node _) = True
instanceOf TypeNamespaceNode _ = False -- Don't think I support this yet.
instanceOf TypeText (String _) = True
instanceOf TypeText (Node n) | NodeContent _ <- node n = True
instanceOf TypeComment (Node n) | NodeComment _ <- node n = True
instanceOf (TypePI Nothing) (Node n) | NodeInstruction _ <- node n = True
instanceOf (TypePI (Just name)) (Node n) | NodeInstruction (Instruction name' _) <- node n = name == name'
instanceOf (TypeSchemaAttribute _) _ = False -- Don't think I support this yet.
instanceOf (TypeAttribute _ _) _ = False -- XML Conduit's datamodel had me support this indirectly.
instanceOf (TypeAtomic "xsd:bool") (Bool _) = True
instanceOf (TypeAtomic "xsd:integer") (Number x) = fromIntegral (floor x) == x
instanceOf (TypeAtomic type_) (Number _) = type_ `elem` ["xsd:double", "xsd:float", "xsd:decimal"]
instanceOf (TypeAtomic type_) (String _) = type_ `notElem` ["xsd:bool", "xsd:double", "xsd:float", "xsd:decimal"]
instanceOf TypeItem _ = True
instanceOf _ _ = False
instanceOf' :: Quantity -> [Value] -> Bool
instanceOf' (Quantity ty Many high) vals@(_:_:_) = instanceOf' (Quantity ty None high) vals
instanceOf' (Quantity ty One high) vals@(_:_) = instanceOf' (Quantity ty None high) vals
instanceOf' (Quantity type_ None Many) vals = all (instanceOf type_) vals
instanceOf' (Quantity type_ None One) vals | length vals <= 1 = all (instanceOf type_) vals
instanceOf' (Quantity _ None None) [] = True
instanceOf' _ _ = False

---- Interpretor

evals ctx = concatMap $ eval ctx
eval :: Context -> Expression -> [Value]
eval ctx (ExprRange from to) = withNums2 (eval ctx from) (eval ctx to) inner
  where
    inner (from:_) (to:_) = map Number [from..to]
    inner _ _ = []
eval ctx (ExprUnion exps) = nub $ concat $ map (eval ctx) exps
eval ctx (ExprIntersect a b) = let b' = eval ctx b in
    [v | v <- eval ctx a, v `elem` b' || isErr v] ++ [err | err <- b', isErr err]
eval ctx (ExprExcept a b) = let b' = eval ctx b in
    [v | v <- eval ctx a, v `notElem` b' || isErr v] ++ [err | err <- b', isErr err]

eval ctx (ExprSum exps) = let (errs, xs) = partitionEithers $ map (num . eval ctx) exps in
    if null errs then [Number $ sum xs] else concat errs
eval ctx (ExprMul a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number (x*y)]
eval ctx (ExprDiv a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number (x/y)]
eval ctx (ExprIDiv a b) = withNum2 (eval ctx a) (eval ctx b) $
    \x y -> [Number $ fromIntegral (floor x `div` floor y)]
eval ctx (ExprMod a b) = withNum2 (eval ctx a) (eval ctx b) $
    \x y -> [Number $ fromIntegral (floor x `rem` floor y)]
eval ctx (ExprNegate a) = case num $ eval ctx a of
    Left errs -> errs
    Right x -> [Number $ negate x]

eval ctx (ExprStrConcat texts) = let (errs, texts') = partitionEithers $ map (text . eval ctx) texts
    in if null errs then [String $ concat $ map concat texts'] else concat errs

eval ctx (ExprGe' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' >= b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' >= b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprGt' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' > b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' > b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprLe' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' <= b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' <= b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprLt' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' < b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' < b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprNe' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' /= b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' /= b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprEq' a b)
    | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' == b')]
    | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' == b')]
    | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b'
eval ctx (ExprGe a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (maximum a' >= minimum b')]
eval ctx (ExprGt a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (maximum a' > minimum b')]
eval ctx (ExprLe a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (minimum a' <= maximum b')]
eval ctx (ExprLt a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (minimum a' < maximum b')]
eval ctx (ExprNe a b) = let (a', b') = (atomsize $ eval ctx a, atomsize $ eval ctx b)
    in if any isErr a' || any isErr b' then [err | err <- a', isErr err] ++ [err | err <- b', isErr err]
    else [Bool $ any (`notElem` b') a']
eval ctx (ExprEq a b) = let (a', b') = (atomsize $ eval ctx a, atomsize $ eval ctx b)
    in if any isErr a' || any isErr b' then [err | err <- a', isErr err] ++ [err | err <- b', isErr err]
    else [Bool $ any (`elem` b') a']
-- TODO node order comparisons.

eval ctx (ExprAnd exps) = let (errs, bools) = partitionEithers $ map (bool . eval ctx) exps
    in if null errs then [Bool $ and bools] else concat errs
eval ctx (ExprOr exps) = let (errs, bools) = partitionEithers $ map (bool . eval ctx) exps
    in if null errs then [Bool $ or bools] else concat errs

eval ctx (ExprInstanceOf a type_) = [Bool $ instanceOf' type_ $ eval ctx a]
eval ctx (ExprTreatAs a type_) | instanceOf' type_ $ eval ctx a = eval ctx a
    | otherwise = [Error "err:XPDY0050" "Expression not of expected type" ("Expected " ++ show type_)]
eval ctx (ExprCastAs a type_) = cast' type_ $ eval ctx a
eval ctx (ExprCastableAs a type_) = let val = eval ctx a in if any isErr val
    then [err | err <- val, isErr err] else [Bool $ not $ any isErr $ cast' type_ val] 

eval ctx (ExprFor name expr body) = concat $ map inner $ eval ctx expr
    where inner subitem = eval ctx { vars = M.insert name [subitem] $ vars ctx } body
eval ctx (ExprLet name expr body) = eval ctx { vars = vars' } body
    where vars' = M.insert name (eval ctx expr) $ vars ctx
eval ctx (ExprIf cond pass fail) = case bool $ evals ctx cond of
    Left errs -> errs
    Right cond' -> eval ctx $ if cond' then pass else fail
eval ctx (ExprQuantified variant tests) =
    let (errs, res) = partitionEithers $ map (\x -> bool [x]) $ eval ctx tests
    in if null errs then [Bool $ (case variant of {Some -> or; Every -> and }) res]
    else concat errs

eval ctx (ExprMap a b) = concatMap (\a' -> eval ctx { item = [a'] } b) $ eval ctx a
eval ctx (ExprArrow self func args) =
    evalPostfix ctx { item = [retrieveArrow ctx func $ succ $ length args] } $ PostCall (self:args)
eval ctx (ExprPath (path:paths)) = eval ctx { item = evalPath ctx path } $ ExprPath paths
eval ctx (ExprPath []) = item ctx
eval _ _ = [] -- TODO

retrieveArrow _ (ArrowName n) arity = FuncRef n arity
retrieveArrow ctx (ArrowVar n) _ | Just [ret] <-  n `M.lookup` vars ctx = ret
    | otherwise = Error "err:XPST0008" "Undefined name" $ show n
retrieveArrow ctx (ArrowExpr exps) _ | [ret] <- evals ctx exps = ret
    | otherwise = Error "err:XPTY0004" "Too many (or no) items in collection identifying function to call" ""

evalPrimary _ (Literal x) = [x]
evalPrimary ctx (VarRef n) | Just val <- n `M.lookup` vars ctx = val
    | otherwise = [Error "err:XPST0008" "Undefined name" $ show n]
evalPrimary ctx (Expr exprs) = evals ctx exprs
evalPrimary ctx ContextItem | null $ item ctx = [Error "err:XPDY0002" "Absent context item" ""]
    | otherwise = item ctx
evalPrimary ctx (FunctionCall n args)
    | Just cb <- (n, length args) `M.lookup` funcs ctx = cb ctx $ map (eval ctx) args
    | otherwise = [Error "err:XPST0017" "Undefined function" (show n ++ '#':show (length args))]
-- NOTE: No recursion! Great! Not Turing Complete, hopefully!
evalPrimary ctx (FunctionItem args retty body) = [Function args retty body $ vars ctx]
evalPrimary ctx (MapConstruct entries)
    | any isErr $ concat $ map (eval ctx . fst) entries = filter isErr $ concat $ map (eval ctx . fst) entries
    | any isErr $ concat $ map (eval ctx . snd) entries = filter isErr $ concat $ map (eval ctx . snd) entries
    | otherwise = [Map $ M.fromList $ map buildEntry entries]
    where buildEntry (key, val) = (concat $ fromRight [] $ text $ eval ctx key, eval ctx val)
evalPrimary ctx (ArrayConstruct entries)
    | any isErr $ concat $ map (eval ctx) entries = filter isErr $ concat $ map (eval ctx) entries
    | otherwise = [Array $ map (eval ctx) entries]
evalPrimary ctx (UnaryLookup key) = evalPostfix ctx (PostLookup key) -- Both the same, both operating on `item ctx`

-- It's a little tricky to get errors thrown correctly this branch...
evalPostfix ctx (PostFilter cond) = concatMap inner $ zip [0..] $ item ctx
  where
    inner (i, item) = case evals ctx { item = [item] } cond of
        [Number x] -> test (x == i)
        v -> case bool v of
            Left ret -> ret
            Right ret -> test ret
      where test cond = if cond then [item] else []
evalPostfix ctx (PostCall _) | length (item ctx) /= 1 = [
    Error "err:XPTY0004" "Function calls require singleton values" (show (length $ item ctx) ++ " items")]
  | not $ null [1 | Error _ _ _ <- item ctx] = [err | err@(Error _ _ _) <- item ctx]
evalPostfix ctx (PostCall args) | not $ null [1 | ArgPlaceholder <- args] = [PartialFunc args $ head $ item ctx]
evalPostfix ctx (PostCall args) = case head $ item ctx of
    Array vals | [arg] <- args -> case nums $ eval ctx arg of
        Left errs -> errs
        Right [i] | i >= 1.0 && floor i <= length vals -> vals !! floor i
        Right [i] -> [Error "err:FOAY0001" "Array index out of bounds" $ show i]
        Right items -> [Error "err:XPTY0004" "Too many items in index" $ show $ length items]
    Map m | [arg] <- args -> case text $ eval ctx arg of
        Left errs -> errs
        Right [key] -> fromMaybe [] $ M.lookup key m
        Right items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items]
    PartialFunc tpl val -> case expandPartial tpl args of
        Left False -> [Error "err:XPTY0004" "Too few arguments to partial" $ show $ length args]
        Left True -> [Error "err:XPTY0004" "Too many arguments to partial" $ show $ length args]
        Right args' -> evalPostfix ctx { item = [val] } $ PostCall args'
    FuncRef name arity | arity /= length args -> [
        Error "err:XPTY0004" "Wrong number of args to referenced function." (show arity ++ " not " ++ show (length args))]
    FuncRef name arity | Just cb <- (name, arity) `M.lookup` funcs ctx -> cb ctx $ map (eval ctx) args
    FuncRef name arity -> [Error "err:XPST0017" "Undfined function" (show name ++ '#':show arity)]
    Function params retty body closure -> case assignArgs params args closure ctx of
        Left False -> [Error "err:XPTY0004" "Too few arguments to dynamic function" $ show $ length args]
        Left True -> [Error "err:XPTY0004" "Too many arguments to dynamic function" $ show $ length args]
        Right vars -> cast' retty $ evals ctx { item = [], vars = vars } body
    _ -> [Error "err:XPTY0004" "Invalid function type" ""]
evalPostfix ctx (PostLookup (KeyExpr exprs)) = case atomsize $ evals ctx exprs of
    [key] -> evalPostfix ctx $ PostLookup $ KeyLiteral key
    items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items]
evalPostfix ctx (PostLookup KeyWildcard) = case item ctx of
    [Array vals] -> concat $ vals
    [Map m] -> concat $ M.elems m
    _ -> [Error "err:XPTY0004" "Invalid collection type or arity" ""]
evalPostfix ctx (PostLookup (KeyLiteral k)) = case item ctx of
    [Array vals] -> case nums [k] of
        Left errs -> errs
        Right [i] | i >= 1.0 && floor i <= length vals -> vals !! floor i
        Right [i] -> [Error "err:FOAY0001" "Array index out of bounds" $ show i]
        Right items -> [Error "err:XPTY0004" "Too many items in index" $ show $ length items]
    [Map m] -> case text [k] of
        Left errs -> errs
        Right [key] -> fromMaybe [] $ M.lookup key m
        Right items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items]
    _ -> [Error "err:XPTY0004" "Invalid collection type or arity" ""]
evalPostfix' ctx (op:ops) = evalPostfix' ctx { item = evalPostfix ctx op } ops
evalPostfix' ctx [] = item ctx

evalPath ctx (PostExpr primary postfix) = evalPostfix' ctx { item = evalPrimary ctx primary } postfix
evalPath ctx (PathStep (Axis axis, test) filters) =
    [n | Node n <- item ctx] >>=
    axis >>=
    check (case test of {Left type_ -> instanceOf type_ . Node; Right name -> hasName name . node }) >>=
    return . Node >>=
    filter' filters ctx
evalPath ctx (PathStep (Attribute, Right n) filters) =
    [node n | Node n <- item ctx] >>= attribute' n >>= filter' filters ctx
evalPath ctx (PathStep (Attribute, Left (TypeAttribute (Just n) type_)) filters) =
    [node n | Node n <- item ctx] >>= attribute' n >>= tryCast' type_ >>= filter' filters ctx
evalPath ctx (PathStep (Attribute, Left (TypeAttribute Nothing type_)) filters) =
    [String $ Txt.unpack val |
        Node n <- item ctx,
        NodeElement (Element _ attrs _) <- [node n],
        (_, val) <- M.toList attrs] >>=
    tryCast' type_ >>=
    filter' filters ctx
evalPath _ (PathStep (Attribute, Left _) _) = []
evalPath _ (PathStep (Namespace, _) _) = [Error "err:XPST0010" "Namespace axis is unsupported" ""]

filter' filters ctx v =
    let (errs, pred) = partitionEithers $ map (bool . evals ctx {item = [v]}) filters
    in [v | and pred] ++ concat errs

---- Dynamic function call support
expandPartial (ArgPlaceholder:tpls) (arg:args) = (arg:) <$> expandPartial tpls args
expandPartial (ArgPlaceholder:_) [] = Left False
expandPartial (tpl:tpls) args = (tpl:) <$> expandPartial tpls args
expandPartial [] (_:_) = Left True
expandPartial [] [] = Right []

assignArgs ((name, type_):params) (arg:args) vars ctx =
    let vars' = M.insert name (cast' type_ $ eval ctx arg) vars
    in assignArgs params args vars' ctx
assignArgs (_:_) [] _ _ = Left False
assignArgs [] (_:_) _ _ = Left True
assignArgs [] [] vars _ = Right vars

----Utils

fromLeft _ (Left ret) = ret
fromLeft ret (Right _) = ret
fromRight _ (Right ret) = ret
fromRight ret (Left _) = ret

--- standard library

stdLib :: M.Map (Name, Int) (Context -> [[Value]] -> [Value])
stdLib = M.fromList [
    (("fn:node-name", 1), fnNodeName),
    (("fn:node-name", 0), fnNodeName),
--    (("fn:nilled", 1), fnNilled),
--    (("fn:nilled", 0), fnNilled),
    (("fn:string", 1), fnString),
    (("fn:string", 0), fnString),
    (("fn:data", 1), fnData),
    (("fn:data", 0), fnData),
--    (("fn:base-uri", 1), fnBaseURI),
--    (("fn:document-uri", 1), fnDocumentURI),

    (("fn:error", 0), fnError),
    (("fn:error", 1), fnError),
    (("fn:error", 2), fnError),
    (("fn:error", 3), fnError),

    (("op:numeric-add", 2), fnNumericAdd),
    (("op:numeric-subtract", 2), fnNumericSubtract),
    (("op:numeric-multiply", 2), fnNumericMultiply),
    (("op:numeric-divide", 2), fnNumericDivide),
    (("op:numeric-integer-divide", 2), fnNumericIntegerDivide),
    (("op:numeric-mod", 2), fnNumericMod),
    (("op:numeric-unary-plus", 1), fnNumericUnaryPlus),
    (("op:numeric-unary-minus", 1), fnNumericUnaryMinus),

    (("op:numeric-equal", 2), opNumericEqual),
    (("op:numeric-less-than", 2), opNumericLessThan),
    (("op:numeric-greater-than", 2), opNumericGreaterThan),

    (("fn:abs", 1), fnAbs),
    (("fn:ceiling", 1), fnCeiling),
    (("fn:floor", 1), fnFloor),
    (("fn:round", 1), fnRound),
    (("fn:round-half-to-even", 1), fnRoundToEven),

    (("fn:number", 1), fnNumericUnaryPlus),
--    (("fn:format-integer", 2), fnFormatInteger),
--    (("fn:format-integer", 3), fnFormatInteger),
--    (("fn:format-number", 2), fnFormatNumber),
--    (("fn:format-number", 3), fnFormatNumber),

    (("math:pi", 0), fnMathPi),
    (("math:exp", 1), fnMathExp),
    (("math:exp10", 1), fnMathExp10),
    (("math:log", 1), fnMathLog),
    (("math:log10", 1), fnMathLog10),
    (("math:pow", 2), fnMathPow),
    (("math:sqrt", 1), fnMathSqrt),
    (("math:sin", 1), fnMathSin),
    (("math:cos", 1), fnMathCos),
    (("math:tan", 1), fnMathTan),
    (("math:asin", 1), fnMathASin),
    (("math:acos", 1), fnMathACos),
    (("math:atan", 1), fnMathATan),
    (("math:atan2", 2), fnMathATan2)
  ]
typeError = [Error "fn:XPTY0004" "Invalid type signature for function" ""]

fnNodeName _ [[Node c]] | NodeElement (Element name _ _) <- node c = [String $ show name]
    | otherwise = typeError
fnNodeName ctx [] = fnNodeName ctx [item ctx]
fnNodeName _ _ = typeError
fnString _ [[Node c]] = [String $ Txt.unpack $ nodeText $ node c]
fnString ctx [] = fnString ctx [item ctx]
fnString _ _ = typeError
fnData _ [val] = atomsize val
fnData ctx [] = atomsize $ item ctx
fnData _ _ = typeError

fnError _ [] = [Error "err:user" "" ""]
fnError _ [code'] | Right [code] <- text code' =
    [Error (fromRight "err:user" $ parseQName $ Txt.pack code) "" ""]
fnError _ [code', msg'] | Right [code] <- text code', Right [msg] <- text msg' =
    [Error (fromRight "err:user" $ parseQName $ Txt.pack code) msg ""]
fnError _ [code', msg', items] | Right [code] <- text code', Right [msg] <- text msg' =
    [Error (fromRight "err:user" $ parseQName $ Txt.pack code) msg $ concat $ fromRight [] $ text items]
fnError _ _ = typeError

fnNumericAdd _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x + y)]
fnNumericAdd _ _ = typeError
fnNumericSubtract _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x - y)]
fnNumericSubtract _ _ = typeError
fnNumericMultiply _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x * y)]
fnNumericMultiply _ _ = typeError
fnNumericDivide _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x / y)]
fnNumericDivide _ _ = typeError
fnNumericIntegerDivide _ [x', y'] | Right x <- num x', Right y <- num y' = [Number $ fromIntegral (floor x `div` floor y)]
fnNumericIntegerDivide _ _ = typeError
fnNumericMod _ [x', y'] | Right x <- num x', Right y <- num y' = [Number $ fromIntegral (floor x `rem` floor y)]
fnNumericMod _ _ = typeError
fnNumericUnaryPlus _ [x'] | Right x <- num x' = [Number x]
fnNumericUnaryPlus _ _ = typeError
fnNumericUnaryMinus _ [x'] | Right x <- num x' = [Number $ negate x]
fnNumericUnaryMinus _ _ = typeError

opNumericEqual _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x == y)]
opNumericEqual _ _ = typeError
opNumericLessThan _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x < y)]
opNumericLessThan _ _ = typeError
opNumericGreaterThan _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x > y)]
opNumericGreaterThan _ _ = typeError

fnAbs _ [x'] | Right x <- num x' = [Number $ abs x]
fnAbs _ _ = typeError
fnCeiling _ [x'] | Right x <- num x' = [Number $ fromIntegral $ ceiling x]
fnCeiling _ _ = typeError
fnFloor _ [x'] | Right x <- num x' = [Number $ fromIntegral $ floor x]
fnFloor _ _ = typeError
fnRound _ [x'] | Right x <- num x' = [Number $ fromIntegral $ round x]
fnRound _ _ = typeError
fnRoundToEven _ [x'] | Right x <- num x' = [Number $ fromIntegral $ toEven $ round x]
  where toEven y = if even y then y else succ y
fnRoundToEven _ _ = typeError

fnMathPi _ [] = [Number pi]
fnMathPi _ _ = typeError
fnMathExp _ [x'] | Right x <- num x' = [Number $ exp x]
fnMathExp _ _ = typeError
fnMathExp10 _ [x'] | Right x <- num x' = [Number (10 ** x)]
fnMathExp10 _ _ = typeError
fnMathLog _ [x'] | Right x <- num x' = [Number $ log x]
fnMathLog _ _ = typeError
fnMathLog10 _ [x'] | Right x <- num x' = [Number $ logBase 10 x]
fnMathLog10 _ _ = typeError
fnMathPow _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x ** y)]
fnMathPow _ _ = typeError
fnMathSqrt _ [x'] | Right x <- num x' = [Number $ sqrt x]
fnMathSqrt _ _ = typeError
fnMathSin _ [x'] | Right x <- num x' = [Number $ sin x]
fnMathSin _ _ = typeError
fnMathCos _ [x'] | Right x <- num x' = [Number $ cos x]
fnMathCos _ _ = typeError
fnMathTan _ [x'] | Right x <- num x' = [Number $ tan x]
fnMathTan _ _ = typeError
fnMathASin _ [x'] | Right x <- num x' = [Number $ asin x]
fnMathASin _ _ = typeError
fnMathACos _ [x'] | Right x <- num x' = [Number $ acos x]
fnMathACos _ _ = typeError
fnMathATan _ [x'] | Right x <- num x' = [Number $ atan x]
fnMathATan _ _ = typeError
fnMathATan2 _ [y', x'] | Right x <- num x', Right y <- num y' = [Number $ atan2 y x]
fnMathATan2 _ _ = typeError

---- Public API
runXPath' node sel = case parseXPath sel of
    Right ast -> evals Context {
            item = [Node node],
            vars = M.empty,
            funcs = stdLib
        } ast
    Left err -> [Error "err:syntax" err ""]
runXPath node sel = let ret = runXPath' node sel
    in if any isErr ret then Left [msg | Error name msg _ <- ret]
    else Right [n | Node n <- ret]