{-# LANGUAGE OverloadedStrings #-} module Internal.Elements.XPath where import Internal.Elements.XPathParse import qualified Data.Text as Txt import Data.Text (Text) import Text.XML.Cursor hiding (bool) import Text.XML import qualified Data.Map.Strict as M import Data.Time import Data.Maybe import Data.Either import Data.List (nub) import Text.Read (readMaybe) -- Loosely transliterated from https://www.w3.org/TR/xpath-3/#eval_context -- TODO How much are noops? data Context = Context { item :: [Value], vars :: M.Map Name [Value], funcs :: M.Map (Name, Int) (Context -> [[Value]] -> [Value]) } ---- Typesystem/coercion atomize :: Value -> [Value] atomize ret@(Number _) = [ret] atomize ret@(String _) = [ret] atomize ret@(Bool _) = [ret] atomize ret@(Error _ _ _) = [ret] atomize (Node n) = [String $ Txt.unpack $ nodeText $ node n] -- For a proper implementation, should be parsed via XSD? atomize (Array vals) = atomsize $ concat vals atomize (Map _) = [Error "err:FOTY0013" "Unnaceptable map item" ""] atomize (Function _ _ _ _) = [Error "err:FOTY0013" "Unacceptable function item" ""] atomize (FuncRef _ _) = [Error "err:FOTY0013" "Unacceptable function item" ""] atomsize :: [Value] -> [Value] atomsize = concatMap atomize nodeText (NodeElement (Element _ _ nodes)) = Txt.concat $ map nodeText' nodes nodeText (NodeInstruction (Instruction _ ret)) = ret nodeText (NodeContent ret) = ret nodeText (NodeComment ret) = ret nodeText' (NodeElement (Element _ _ nodes)) = Txt.concat $ map nodeText' nodes nodeText' (NodeContent ret) = ret nodeText' _ = "" maybeName (NodeElement (Element n _ _)) = n maybeName _ = "" nameMatch (Name "*" (Just "*") (Just "*")) _ = True nameMatch (Name "*" (Just "*") (Just prefixA)) (Name _ _ (Just prefixB)) = prefixA == prefixB nameMatch (Name "*" Nothing (Just prefixA)) (Name _ _ (Just prefixB)) = prefixA == prefixB nameMatch (Name "*" (Just "*") Nothing) (Name _ _ prefix) = isNothing prefix nameMatch (Name "*" (Just nsA) _) (Name _ (Just nsB) _) = nsA == nsB nameMatch (Name "*" Nothing _) (Name _ ns _) = isNothing ns nameMatch (Name nameA (Just "*") (Just "*")) (Name nameB _ _) = nameA == nameB nameMatch (Name nameA (Just "*") (Just prefixA)) (Name nameB _ (Just prefixB)) = nameA == nameB && prefixA == prefixB nameMatch (Name nameA Nothing (Just prefixA)) (Name nameB _ (Just prefixB)) = nameA == nameB && prefixA == prefixB nameMatch (Name nameA (Just "*") Nothing) (Name nameB _ prefix) = nameA == nameB && isNothing prefix nameMatch (Name nameA (Just nsA) _) (Name nameB (Just nsB) _) = nameA == nameB && nsA == nsB nameMatch (Name nameA Nothing _) (Name nameB ns _) = nameA == nameB && isNothing ns nameMatch _ _ = False hasName name node = nameMatch (maybeName node) name attribute' name (NodeElement (Element _ attrs _)) = [String $ Txt.unpack val | (key, val) <- M.toList attrs, nameMatch name key] attribute' _ _ = [] bool [] = Right False bool (Node _:_) = Right True bool [Bool ret] = Right ret bool [String ret] = Right $ not $ null ret bool [Number x] = Right $ not (isNaN x || x == 0) bool vals | ret@(_:_) <- [err | err@(Error _ _ _) <- vals] = Left ret bool (val:_) = Left [Error "err:FORG0006" "Invalid argument type" $ show $ val2type val] nums items | ret@(_:_) <- [err | err@(Error _ _ _) <- items] = Left ret nums (Number x:items) = (x:) <$> nums items nums (String str:items) | Just x <- readMaybe str = (x:) <$> nums items | otherwise = Left [Error "err:FORG0001" "Invalid cast to number" str] nums (Bool True:items) = (1:) <$> nums items nums (Bool False:items) = (0:) <$> nums items nums [] = Right [] nums items = nums $ atomsize items num items = case nums items of Left errs -> Left errs Right (x:_) -> Right x Right [] -> Right (0/0) -- NaN withNums2 x y cb = withNums2' (nums x) (nums y) cb withNums2' (Right xs) (Right ys) cb = cb xs ys withNums2' x y _ = fromLeft [] x ++ fromLeft [] y withNum2 x y cb = withNum2' (num x) (num y) cb withNum2' (Right x) (Right y) cb = cb x y withNum2' x y _ = fromLeft [] x ++ fromLeft [] y text :: [Value] -> Either [Value] [String] text items | ret@(_:_) <- [err | err@(Error _ _ _) <- items] = Left ret text (Number x:items) = (show x:) <$> text items text (String ret:items) = (ret:) <$> text items text (Bool b:items) = (show b:) <$> text items text [] = Right [] text items = text $ atomsize items ---Type system cast (TypeAtomic ty) [x] | ty `elem` ["xsd:integer", "xsd:float", "xsd:double", "xsd:decimal"], Right x <- num [x] = [Number x] | ty == "xsd:bool", Right b <- bool [x] = [Bool b] | Right [str] <- text [x] = [String str] cast TypeText [x] | Right [str] <- text [x] = [String str] cast ty [_] = [Error "err:XPTY0004" "Invalid type to cast to." $ show ty] cast _ [] = [] cast _ items = [Error "err:XPTY0004" "Too many items in cast." $ show $ length items] cast' :: Quantity -> [Value] -> [Value] cast' ty val | instanceOf' ty val = val cast' (Quantity ty _ Many) _ = [Error "err:XPDY0050" "Can't cast to non-optional multiplicity" ""] cast' (Quantity ty _ None) _ = [] cast' (Quantity ty Many One) _ = [Error "err:XPDY0050" "Can't cast to non-optional multiplicity" ""] cast' (Quantity ty One One) val | null $ cast ty $ atomsize val = cast ty $ atomsize val | otherwise = [Error "err:XPTY0004" "Expected non-zero items in value." "0"] cast' (Quantity ty None One) val = cast ty $ atomsize val tryCast' (Just ty) val = let val' = cast (TypeAtomic ty) [val] in if any isErr val' then [] else val' tryCast' Nothing val = [val] instanceOf :: XType -> Value -> Bool instanceOf (TypeDocument type_) (Node cursor) | null $ ancestor cursor = instanceOf type_ $ Node cursor instanceOf (TypeElement (Just name) type_) (Node cursor) | NodeElement (Element n _ _) <- node cursor = instanceOf (TypeElement Nothing type_) $ Node cursor instanceOf (TypeElement Nothing (Just "xsd:bool")) val | Right res <- text [val] = res `elem` [["true"], ["false"]] instanceOf (TypeElement Nothing (Just "xsd:integer")) val | Right x <- num [val] = fromIntegral (floor x) == x instanceOf (TypeElement Nothing (Just type_)) val | type_ `elem` ["xsd:double", "xsd:float", "xsd:decimal"] = isRight $ num [val] | otherwise = True instanceOf (TypeArray Nothing) (Array _) = True instanceOf (TypeArray (Just type_)) (Array vals) = all (instanceOf' type_) vals instanceOf (TypeMap Nothing') (Map _) = True instanceOf (TypeMap (Some' _ valType)) (Map m) = all (instanceOf' valType) $ M.elems m -- TODO check keytype instanceOf (TypeFunction Nothing') (Array _) = True instanceOf (TypeFunction Nothing') (Map _) = True instanceOf (TypeFunction Nothing') (PartialFunc _ _) = True instanceOf (TypeFunction Nothing') (FuncRef _ _) = True instanceOf (TypeFunction Nothing') (Function _ _ _ _) = True instanceOf (TypeFunction (Some' [Quantity (TypeAtomic "xsd:integer") One One] retty)) (Array vals) = all (instanceOf' retty) vals instanceOf (TypeFunction (Some' [Quantity (TypeAtomic _) One One] retty)) (Map m) = all (instanceOf' retty) $ M.elems m instanceOf (TypeFunction (Some' [Quantity TypeText One One] retty)) (Map m) = all (instanceOf' retty) $ M.elems m -- FIXME doesn't actually check types, that requires deeper introspection than I currently model. instanceOf (TypeFunction (Some' argtys _)) (PartialFunc args _) = length argtys == length args instanceOf (TypeFunction (Some' argtys _)) (FuncRef _ nargs) = length argtys == nargs instanceOf (TypeFunction (Some' argtys retty)) (Function args retty' _ _) = retty == retty' && and [ty == ty' | (ty, (_, ty')) <- zip argtys args] instanceOf (TypeSchemaElement _) _ = False -- TODO What's this? instanceOf TypeNode (Node _) = True instanceOf TypeNamespaceNode _ = False -- Don't think I support this yet. instanceOf TypeText (String _) = True instanceOf TypeText (Node n) | NodeContent _ <- node n = True instanceOf TypeComment (Node n) | NodeComment _ <- node n = True instanceOf (TypePI Nothing) (Node n) | NodeInstruction _ <- node n = True instanceOf (TypePI (Just name)) (Node n) | NodeInstruction (Instruction name' _) <- node n = name == name' instanceOf (TypeSchemaAttribute _) _ = False -- Don't think I support this yet. instanceOf (TypeAttribute _ _) _ = False -- XML Conduit's datamodel had me support this indirectly. instanceOf (TypeAtomic "xsd:bool") (Bool _) = True instanceOf (TypeAtomic "xsd:integer") (Number x) = fromIntegral (floor x) == x instanceOf (TypeAtomic type_) (Number _) = type_ `elem` ["xsd:double", "xsd:float", "xsd:decimal"] instanceOf (TypeAtomic type_) (String _) = type_ `notElem` ["xsd:bool", "xsd:double", "xsd:float", "xsd:decimal"] instanceOf TypeItem _ = True instanceOf _ _ = False instanceOf' :: Quantity -> [Value] -> Bool instanceOf' (Quantity ty Many high) vals@(_:_:_) = instanceOf' (Quantity ty None high) vals instanceOf' (Quantity ty One high) vals@(_:_) = instanceOf' (Quantity ty None high) vals instanceOf' (Quantity type_ None Many) vals = all (instanceOf type_) vals instanceOf' (Quantity type_ None One) vals | length vals <= 1 = all (instanceOf type_) vals instanceOf' (Quantity _ None None) [] = True instanceOf' _ _ = False ---- Interpretor evals ctx = concatMap $ eval ctx eval :: Context -> Expression -> [Value] eval ctx (ExprRange from to) = withNums2 (eval ctx from) (eval ctx to) inner where inner (from:_) (to:_) = map Number [from..to] inner _ _ = [] eval ctx (ExprUnion exps) = nub $ concat $ map (eval ctx) exps eval ctx (ExprIntersect a b) = let b' = eval ctx b in [v | v <- eval ctx a, v `elem` b' || isErr v] ++ [err | err <- b', isErr err] eval ctx (ExprExcept a b) = let b' = eval ctx b in [v | v <- eval ctx a, v `notElem` b' || isErr v] ++ [err | err <- b', isErr err] eval ctx (ExprSum exps) = let (errs, xs) = partitionEithers $ map (num . eval ctx) exps in if null errs then [Number $ sum xs] else concat errs eval ctx (ExprMul a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number (x*y)] eval ctx (ExprDiv a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number (x/y)] eval ctx (ExprIDiv a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number $ fromIntegral (floor x `div` floor y)] eval ctx (ExprMod a b) = withNum2 (eval ctx a) (eval ctx b) $ \x y -> [Number $ fromIntegral (floor x `rem` floor y)] eval ctx (ExprNegate a) = case num $ eval ctx a of Left errs -> errs Right x -> [Number $ negate x] eval ctx (ExprStrConcat texts) = let (errs, texts') = partitionEithers $ map (text . eval ctx) texts in if null errs then [String $ concat $ map concat texts'] else concat errs eval ctx (ExprGe' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' >= b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' >= b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprGt' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' > b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' > b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprLe' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' <= b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' <= b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprLt' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' < b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' < b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprNe' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' /= b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' /= b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprEq' a b) | (Number a':_) <- atomsize $ eval ctx a, (Number b':_) <- atomsize $ eval ctx b = [Bool (a' == b')] | Right a' <- num $ eval ctx a, Right b' <- num $ eval ctx b = [Bool (a' == b')] | a' <- num $ eval ctx a, b' <- num $ eval ctx b = fromLeft [] a' ++ fromLeft [] b' eval ctx (ExprGe a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (maximum a' >= minimum b')] eval ctx (ExprGt a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (maximum a' > minimum b')] eval ctx (ExprLe a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (minimum a' <= maximum b')] eval ctx (ExprLt a b) = withNums2 (eval ctx a) (eval ctx b) $ \a' b' -> [Bool (minimum a' < maximum b')] eval ctx (ExprNe a b) = let (a', b') = (atomsize $ eval ctx a, atomsize $ eval ctx b) in if any isErr a' || any isErr b' then [err | err <- a', isErr err] ++ [err | err <- b', isErr err] else [Bool $ any (`notElem` b') a'] eval ctx (ExprEq a b) = let (a', b') = (atomsize $ eval ctx a, atomsize $ eval ctx b) in if any isErr a' || any isErr b' then [err | err <- a', isErr err] ++ [err | err <- b', isErr err] else [Bool $ any (`elem` b') a'] -- TODO node order comparisons. eval ctx (ExprAnd exps) = let (errs, bools) = partitionEithers $ map (bool . eval ctx) exps in if null errs then [Bool $ and bools] else concat errs eval ctx (ExprOr exps) = let (errs, bools) = partitionEithers $ map (bool . eval ctx) exps in if null errs then [Bool $ or bools] else concat errs eval ctx (ExprInstanceOf a type_) = [Bool $ instanceOf' type_ $ eval ctx a] eval ctx (ExprTreatAs a type_) | instanceOf' type_ $ eval ctx a = eval ctx a | otherwise = [Error "err:XPDY0050" "Expression not of expected type" ("Expected " ++ show type_)] eval ctx (ExprCastAs a type_) = cast' type_ $ eval ctx a eval ctx (ExprCastableAs a type_) = let val = eval ctx a in if any isErr val then [err | err <- val, isErr err] else [Bool $ not $ any isErr $ cast' type_ val] eval ctx (ExprFor name expr body) = concat $ map inner $ eval ctx expr where inner subitem = eval ctx { vars = M.insert name [subitem] $ vars ctx } body eval ctx (ExprLet name expr body) = eval ctx { vars = vars' } body where vars' = M.insert name (eval ctx expr) $ vars ctx eval ctx (ExprIf cond pass fail) = case bool $ evals ctx cond of Left errs -> errs Right cond' -> eval ctx $ if cond' then pass else fail eval ctx (ExprQuantified variant tests) = let (errs, res) = partitionEithers $ map (\x -> bool [x]) $ eval ctx tests in if null errs then [Bool $ (case variant of {Some -> or; Every -> and }) res] else concat errs eval ctx (ExprMap a b) = concatMap (\a' -> eval ctx { item = [a'] } b) $ eval ctx a eval ctx (ExprArrow self func args) = evalPostfix ctx { item = [retrieveArrow ctx func $ succ $ length args] } $ PostCall (self:args) eval ctx (ExprPath (path:paths)) = eval ctx { item = evalPath ctx path } $ ExprPath paths eval ctx (ExprPath []) = item ctx eval _ _ = [] -- TODO retrieveArrow _ (ArrowName n) arity = FuncRef n arity retrieveArrow ctx (ArrowVar n) _ | Just [ret] <- n `M.lookup` vars ctx = ret | otherwise = Error "err:XPST0008" "Undefined name" $ show n retrieveArrow ctx (ArrowExpr exps) _ | [ret] <- evals ctx exps = ret | otherwise = Error "err:XPTY0004" "Too many (or no) items in collection identifying function to call" "" evalPrimary _ (Literal x) = [x] evalPrimary ctx (VarRef n) | Just val <- n `M.lookup` vars ctx = val | otherwise = [Error "err:XPST0008" "Undefined name" $ show n] evalPrimary ctx (Expr exprs) = evals ctx exprs evalPrimary ctx ContextItem | null $ item ctx = [Error "err:XPDY0002" "Absent context item" ""] | otherwise = item ctx evalPrimary ctx (FunctionCall n args) | Just cb <- (n, length args) `M.lookup` funcs ctx = cb ctx $ map (eval ctx) args | otherwise = [Error "err:XPST0017" "Undefined function" (show n ++ '#':show (length args))] -- NOTE: No recursion! Great! Not Turing Complete, hopefully! evalPrimary ctx (FunctionItem args retty body) = [Function args retty body $ vars ctx] evalPrimary ctx (MapConstruct entries) | any isErr $ concat $ map (eval ctx . fst) entries = filter isErr $ concat $ map (eval ctx . fst) entries | any isErr $ concat $ map (eval ctx . snd) entries = filter isErr $ concat $ map (eval ctx . snd) entries | otherwise = [Map $ M.fromList $ map buildEntry entries] where buildEntry (key, val) = (concat $ fromRight [] $ text $ eval ctx key, eval ctx val) evalPrimary ctx (ArrayConstruct entries) | any isErr $ concat $ map (eval ctx) entries = filter isErr $ concat $ map (eval ctx) entries | otherwise = [Array $ map (eval ctx) entries] evalPrimary ctx (UnaryLookup key) = evalPostfix ctx (PostLookup key) -- Both the same, both operating on `item ctx` -- It's a little tricky to get errors thrown correctly this branch... evalPostfix ctx (PostFilter cond) = concatMap inner $ zip [0..] $ item ctx where inner (i, item) = case evals ctx { item = [item] } cond of [Number x] -> test (x == i) v -> case bool v of Left ret -> ret Right ret -> test ret where test cond = if cond then [item] else [] evalPostfix ctx (PostCall _) | length (item ctx) /= 1 = [ Error "err:XPTY0004" "Function calls require singleton values" (show (length $ item ctx) ++ " items")] | not $ null [1 | Error _ _ _ <- item ctx] = [err | err@(Error _ _ _) <- item ctx] evalPostfix ctx (PostCall args) | not $ null [1 | ArgPlaceholder <- args] = [PartialFunc args $ head $ item ctx] evalPostfix ctx (PostCall args) = case head $ item ctx of Array vals | [arg] <- args -> case nums $ eval ctx arg of Left errs -> errs Right [i] | i >= 1.0 && floor i <= length vals -> vals !! floor i Right [i] -> [Error "err:FOAY0001" "Array index out of bounds" $ show i] Right items -> [Error "err:XPTY0004" "Too many items in index" $ show $ length items] Map m | [arg] <- args -> case text $ eval ctx arg of Left errs -> errs Right [key] -> fromMaybe [] $ M.lookup key m Right items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items] PartialFunc tpl val -> case expandPartial tpl args of Left False -> [Error "err:XPTY0004" "Too few arguments to partial" $ show $ length args] Left True -> [Error "err:XPTY0004" "Too many arguments to partial" $ show $ length args] Right args' -> evalPostfix ctx { item = [val] } $ PostCall args' FuncRef name arity | arity /= length args -> [ Error "err:XPTY0004" "Wrong number of args to referenced function." (show arity ++ " not " ++ show (length args))] FuncRef name arity | Just cb <- (name, arity) `M.lookup` funcs ctx -> cb ctx $ map (eval ctx) args FuncRef name arity -> [Error "err:XPST0017" "Undfined function" (show name ++ '#':show arity)] Function params retty body closure -> case assignArgs params args closure ctx of Left False -> [Error "err:XPTY0004" "Too few arguments to dynamic function" $ show $ length args] Left True -> [Error "err:XPTY0004" "Too many arguments to dynamic function" $ show $ length args] Right vars -> cast' retty $ evals ctx { item = [], vars = vars } body _ -> [Error "err:XPTY0004" "Invalid function type" ""] evalPostfix ctx (PostLookup (KeyExpr exprs)) = case atomsize $ evals ctx exprs of [key] -> evalPostfix ctx $ PostLookup $ KeyLiteral key items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items] evalPostfix ctx (PostLookup KeyWildcard) = case item ctx of [Array vals] -> concat $ vals [Map m] -> concat $ M.elems m _ -> [Error "err:XPTY0004" "Invalid collection type or arity" ""] evalPostfix ctx (PostLookup (KeyLiteral k)) = case item ctx of [Array vals] -> case nums [k] of Left errs -> errs Right [i] | i >= 1.0 && floor i <= length vals -> vals !! floor i Right [i] -> [Error "err:FOAY0001" "Array index out of bounds" $ show i] Right items -> [Error "err:XPTY0004" "Too many items in index" $ show $ length items] [Map m] -> case text [k] of Left errs -> errs Right [key] -> fromMaybe [] $ M.lookup key m Right items -> [Error "err:XPTY0004" "Too many items in key" $ show $ length items] _ -> [Error "err:XPTY0004" "Invalid collection type or arity" ""] evalPostfix' ctx (op:ops) = evalPostfix' ctx { item = evalPostfix ctx op } ops evalPostfix' ctx [] = item ctx evalPath ctx (PostExpr primary postfix) = evalPostfix' ctx { item = evalPrimary ctx primary } postfix evalPath ctx (PathStep (Axis axis, test) filters) = [n | Node n <- item ctx] >>= axis >>= check (case test of {Left type_ -> instanceOf type_ . Node; Right name -> hasName name . node }) >>= return . Node >>= filter' filters ctx evalPath ctx (PathStep (Attribute, Right n) filters) = [node n | Node n <- item ctx] >>= attribute' n >>= filter' filters ctx evalPath ctx (PathStep (Attribute, Left (TypeAttribute (Just n) type_)) filters) = [node n | Node n <- item ctx] >>= attribute' n >>= tryCast' type_ >>= filter' filters ctx evalPath ctx (PathStep (Attribute, Left (TypeAttribute Nothing type_)) filters) = [String $ Txt.unpack val | Node n <- item ctx, NodeElement (Element _ attrs _) <- [node n], (_, val) <- M.toList attrs] >>= tryCast' type_ >>= filter' filters ctx evalPath _ (PathStep (Attribute, Left _) _) = [] evalPath _ (PathStep (Namespace, _) _) = [Error "err:XPST0010" "Namespace axis is unsupported" ""] filter' filters ctx v = let (errs, pred) = partitionEithers $ map (bool . evals ctx {item = [v]}) filters in [v | and pred] ++ concat errs ---- Dynamic function call support expandPartial (ArgPlaceholder:tpls) (arg:args) = (arg:) <$> expandPartial tpls args expandPartial (ArgPlaceholder:_) [] = Left False expandPartial (tpl:tpls) args = (tpl:) <$> expandPartial tpls args expandPartial [] (_:_) = Left True expandPartial [] [] = Right [] assignArgs ((name, type_):params) (arg:args) vars ctx = let vars' = M.insert name (cast' type_ $ eval ctx arg) vars in assignArgs params args vars' ctx assignArgs (_:_) [] _ _ = Left False assignArgs [] (_:_) _ _ = Left True assignArgs [] [] vars _ = Right vars ----Utils fromLeft _ (Left ret) = ret fromLeft ret (Right _) = ret fromRight _ (Right ret) = ret fromRight ret (Left _) = ret --- standard library stdLib :: M.Map (Name, Int) (Context -> [[Value]] -> [Value]) stdLib = M.fromList [ (("fn:node-name", 1), fnNodeName), (("fn:node-name", 0), fnNodeName), -- (("fn:nilled", 1), fnNilled), -- (("fn:nilled", 0), fnNilled), (("fn:string", 1), fnString), (("fn:string", 0), fnString), (("fn:data", 1), fnData), (("fn:data", 0), fnData), -- (("fn:base-uri", 1), fnBaseURI), -- (("fn:document-uri", 1), fnDocumentURI), (("fn:error", 0), fnError), (("fn:error", 1), fnError), (("fn:error", 2), fnError), (("fn:error", 3), fnError), (("op:numeric-add", 2), fnNumericAdd), (("op:numeric-subtract", 2), fnNumericSubtract), (("op:numeric-multiply", 2), fnNumericMultiply), (("op:numeric-divide", 2), fnNumericDivide), (("op:numeric-integer-divide", 2), fnNumericIntegerDivide), (("op:numeric-mod", 2), fnNumericMod), (("op:numeric-unary-plus", 1), fnNumericUnaryPlus), (("op:numeric-unary-minus", 1), fnNumericUnaryMinus), (("op:numeric-equal", 2), opNumericEqual), (("op:numeric-less-than", 2), opNumericLessThan), (("op:numeric-greater-than", 2), opNumericGreaterThan), (("fn:abs", 1), fnAbs), (("fn:ceiling", 1), fnCeiling), (("fn:floor", 1), fnFloor), (("fn:round", 1), fnRound), (("fn:round-half-to-even", 1), fnRoundToEven), (("fn:number", 1), fnNumericUnaryPlus), -- (("fn:format-integer", 2), fnFormatInteger), -- (("fn:format-integer", 3), fnFormatInteger), -- (("fn:format-number", 2), fnFormatNumber), -- (("fn:format-number", 3), fnFormatNumber), (("math:pi", 0), fnMathPi), (("math:exp", 1), fnMathExp), (("math:exp10", 1), fnMathExp10), (("math:log", 1), fnMathLog), (("math:log10", 1), fnMathLog10), (("math:pow", 2), fnMathPow), (("math:sqrt", 1), fnMathSqrt), (("math:sin", 1), fnMathSin), (("math:cos", 1), fnMathCos), (("math:tan", 1), fnMathTan), (("math:asin", 1), fnMathASin), (("math:acos", 1), fnMathACos), (("math:atan", 1), fnMathATan), (("math:atan2", 2), fnMathATan2) ] typeError = [Error "fn:XPTY0004" "Invalid type signature for function" ""] fnNodeName _ [[Node c]] | NodeElement (Element name _ _) <- node c = [String $ show name] | otherwise = typeError fnNodeName ctx [] = fnNodeName ctx [item ctx] fnNodeName _ _ = typeError fnString _ [[Node c]] = [String $ Txt.unpack $ nodeText $ node c] fnString ctx [] = fnString ctx [item ctx] fnString _ _ = typeError fnData _ [val] = atomsize val fnData ctx [] = atomsize $ item ctx fnData _ _ = typeError fnError _ [] = [Error "err:user" "" ""] fnError _ [code'] | Right [code] <- text code' = [Error (fromRight "err:user" $ parseQName $ Txt.pack code) "" ""] fnError _ [code', msg'] | Right [code] <- text code', Right [msg] <- text msg' = [Error (fromRight "err:user" $ parseQName $ Txt.pack code) msg ""] fnError _ [code', msg', items] | Right [code] <- text code', Right [msg] <- text msg' = [Error (fromRight "err:user" $ parseQName $ Txt.pack code) msg $ concat $ fromRight [] $ text items] fnError _ _ = typeError fnNumericAdd _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x + y)] fnNumericAdd _ _ = typeError fnNumericSubtract _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x - y)] fnNumericSubtract _ _ = typeError fnNumericMultiply _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x * y)] fnNumericMultiply _ _ = typeError fnNumericDivide _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x / y)] fnNumericDivide _ _ = typeError fnNumericIntegerDivide _ [x', y'] | Right x <- num x', Right y <- num y' = [Number $ fromIntegral (floor x `div` floor y)] fnNumericIntegerDivide _ _ = typeError fnNumericMod _ [x', y'] | Right x <- num x', Right y <- num y' = [Number $ fromIntegral (floor x `rem` floor y)] fnNumericMod _ _ = typeError fnNumericUnaryPlus _ [x'] | Right x <- num x' = [Number x] fnNumericUnaryPlus _ _ = typeError fnNumericUnaryMinus _ [x'] | Right x <- num x' = [Number $ negate x] fnNumericUnaryMinus _ _ = typeError opNumericEqual _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x == y)] opNumericEqual _ _ = typeError opNumericLessThan _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x < y)] opNumericLessThan _ _ = typeError opNumericGreaterThan _ [x', y'] | Right x <- num x', Right y <- num y' = [Bool (x > y)] opNumericGreaterThan _ _ = typeError fnAbs _ [x'] | Right x <- num x' = [Number $ abs x] fnAbs _ _ = typeError fnCeiling _ [x'] | Right x <- num x' = [Number $ fromIntegral $ ceiling x] fnCeiling _ _ = typeError fnFloor _ [x'] | Right x <- num x' = [Number $ fromIntegral $ floor x] fnFloor _ _ = typeError fnRound _ [x'] | Right x <- num x' = [Number $ fromIntegral $ round x] fnRound _ _ = typeError fnRoundToEven _ [x'] | Right x <- num x' = [Number $ fromIntegral $ toEven $ round x] where toEven y = if even y then y else succ y fnRoundToEven _ _ = typeError fnMathPi _ [] = [Number pi] fnMathPi _ _ = typeError fnMathExp _ [x'] | Right x <- num x' = [Number $ exp x] fnMathExp _ _ = typeError fnMathExp10 _ [x'] | Right x <- num x' = [Number (10 ** x)] fnMathExp10 _ _ = typeError fnMathLog _ [x'] | Right x <- num x' = [Number $ log x] fnMathLog _ _ = typeError fnMathLog10 _ [x'] | Right x <- num x' = [Number $ logBase 10 x] fnMathLog10 _ _ = typeError fnMathPow _ [x', y'] | Right x <- num x', Right y <- num y' = [Number (x ** y)] fnMathPow _ _ = typeError fnMathSqrt _ [x'] | Right x <- num x' = [Number $ sqrt x] fnMathSqrt _ _ = typeError fnMathSin _ [x'] | Right x <- num x' = [Number $ sin x] fnMathSin _ _ = typeError fnMathCos _ [x'] | Right x <- num x' = [Number $ cos x] fnMathCos _ _ = typeError fnMathTan _ [x'] | Right x <- num x' = [Number $ tan x] fnMathTan _ _ = typeError fnMathASin _ [x'] | Right x <- num x' = [Number $ asin x] fnMathASin _ _ = typeError fnMathACos _ [x'] | Right x <- num x' = [Number $ acos x] fnMathACos _ _ = typeError fnMathATan _ [x'] | Right x <- num x' = [Number $ atan x] fnMathATan _ _ = typeError fnMathATan2 _ [y', x'] | Right x <- num x', Right y <- num y' = [Number $ atan2 y x] fnMathATan2 _ _ = typeError ---- Public API runXPath' node sel = case parseXPath sel of Right ast -> evals Context { item = [Node node], vars = M.empty, funcs = stdLib } ast Left err -> [Error "err:syntax" err ""] runXPath node sel = let ret = runXPath' node sel in if any isErr ret then Left [msg | Error name msg _ <- ret] else Right [n | Node n <- ret]