-- | Layout formula positioning children horizontally or vertically, with or without wrapping.
module Graphics.Layout.Flex(
Flex(..), FlexChild(..), Direction(..), FlexWrapping(..), Justification(..), Alignment(..),
flexMap, flexResolve, flexMaxBasis, flexSumBasis, flexWrap, flexRowSize, flexRowsSize,
justifyOffset, justifySpacing, flexJustify, alignOffset,
outerMinMain, outerMain, outerMaxMain, outerMinCross, outerCross, outerMaxCross,
innerMinMain, innerMain, innerMaxMain, innerMinCross, innerCross, innerMaxCross,
flexGetBox, flexSplit, flexPosition) where
import Graphics.Layout.Box as B (Length(..), lowerLength, Size(..), PaddedBox(..),
maxWidth, width, minWidth, maxHeight, height, minHeight, CastDouble(..), Zero(..))
import Data.List (intersperse)
import GHC.Real (infinity)
import Data.Maybe (fromMaybe)
-- | Parameters to flexbox layout
data Flex a b = Flex {
-- | On which axis to position children
direction :: Direction,
-- | Whether to reverse each row
reverseRows :: Bool,
-- | Whether to wrap children to multiple lines
wrap :: FlexWrapping,
-- | How to justify children within lines
justify :: Justification,
-- | How to justify lines within the flexbox. Nothing is CSS "stretch".
alignLines :: Maybe Justification,
-- | Gap between children
baseGap :: b,
-- | Gap between lines
crossGap :: b,
-- | The children to layout, 2D list so as to store lines once split.
children :: [[FlexChild a b]],
-- | How wide to consider the page when paginating.
pageWidth :: Double
} deriving (Eq, Show, Read)
-- | Properties for positioning a child of a flexbox
data FlexChild a b = FlexChild {
grow :: Double,
shrink :: Double,
basis :: b,
alignment :: Alignment,
flexInner :: a
} deriving (Eq, Show, Read)
-- | Which axis to position children along
data Direction = Row | Column deriving (Eq, Show, Read)
-- | Whether to wrap or reverse the wrapped lines
data FlexWrapping = NoWrap | Wrap | WrapReverse deriving (Eq, Show, Read)
-- | How to position lines within a flexbox, or children within a line
data Justification = JStart | JEnd | JCenter | JSpaceBetween | JSpaceAround | JSpaceEvenly
deriving (Eq, Show, Read)
-- | How to align children along the cross-axis (opposite axis from which they're laid out)
data Alignment = AlStretch | AlStart | AlEnd | AlCenter | AlBaseline
deriving (Eq, Show, Read)
-- | Apply an operation to every child
flexMap :: (a -> b) -> Flex a c -> Flex b c
flexMap cb self = Flex {
direction = direction self, reverseRows = reverseRows self, wrap = wrap self,
justify = justify self, alignLines = alignLines self,
baseGap = baseGap self, crossGap = crossGap self, pageWidth = pageWidth self,
children = [[FlexChild {
grow = grow kid, shrink = shrink kid, basis = basis kid,
alignment = alignment kid,
flexInner = cb $ flexInner kid -- The important line!
} | kid <- row] | row <- children self]
}
-- | Resolve lengths in the flexbox to doubles.
flexResolve :: CastDouble b => (a -> Direction -> Double) -> Double ->
Flex a b -> Flex a Double
flexResolve cb size self = Flex {
direction = direction self, reverseRows = reverseRows self, wrap = wrap self,
justify = justify self, alignLines = alignLines self,
baseGap = toDoubleWithin size $ baseGap self,
crossGap = toDoubleWithin size $ crossGap self,
pageWidth = pageWidth self,
children = [[FlexChild {
grow = grow kid, shrink = shrink kid,
basis = toDoubleWithinAuto (flexInner kid `cb` direction self) size $ basis kid,
alignment = alignment kid, flexInner = flexInner kid
} | kid <- row] | row <- children self]
}
-- | The minimum size of the flexbox along `direction`, i.e. maximum size of a child.
flexMaxBasis :: Flex a Double -> Double
flexMaxBasis self = maximum [basis child | row <- children self, child <- row]
-- | The maximum width of each row of the flexbox.
flexSumBasis :: Flex a Double -> Double
flexSumBasis self = maximum [Prelude.sum $
intersperse (baseGap self) $ map basis row | row <- children self]
-- | Wrap all lines to a given size reassigning overflow or underflow space.
-- NOTE: shrink propery may yield negative sizes. Caller will want to enforce min-sizes.
flexWrap :: CastDouble b => Flex a b -> Double -> Flex a b
flexWrap self size
| NoWrap <- wrap self = post self
| Wrap <- wrap self = post self'
| WrapReverse <- wrap self = post self' { children=reverse $ children self' }
where
self' = self {
children = concatMap wrapRow $ children self
}
wrapRow :: CastDouble b => [FlexChild a b] -> [[FlexChild a b]]
wrapRow [] = []
wrapRow kids@(kid:_) = let (row, rest) = splitRow' kids $ basis' kid
in row:wrapRow rest
splitRow, splitRow' :: CastDouble b => [FlexChild a b] -> Double ->
([FlexChild a b], [FlexChild a b])
-- This wrapper function ensures we don't end up with empty rows, or infinite loops.
splitRow' (kid:kids) end =
let (kids', rest) = splitRow kids (end + baseGap' self + basis' kid)
in (kid:kids', rest)
splitRow' [] _ = ([], [])
splitRow (kid:kids) end
| end > size = ([], kid:kids)
| otherwise = let (kids', rest) = splitRow kids (end + baseGap' self + basis' kid)
in (kid:kids', rest)
splitRow [] _ = ([], [])
post :: CastDouble b => Flex a b -> Flex a b
post flex
| reverseRows self = post' flex { children = map reverse $ children flex }
| otherwise = post' flex
post' :: CastDouble b => Flex a b -> Flex a b
post' flex = flex { children = map resizeRow $ children flex }
resizeRow :: CastDouble b => [FlexChild a b] -> [FlexChild a b]
resizeRow row
| rowSize > size = [kid {
basis = fromDouble $ basis' kid - shrink kid * nanguard sfr
} | kid <- row]
| rowSize < size = [kid {
basis = fromDouble $ basis' kid + grow kid * nanguard gfr
} | kid <- row]
| otherwise = row
where
rowSize = Prelude.sum $ intersperse (baseGap' self) $ map basis' row
sfr = (rowSize - size)/(Prelude.sum $ map shrink row)
gfr = (size - rowSize)/(Prelude.sum $ map grow row)
nanguard x | isNaN x = 0
| isInfinite x = 0
| otherwise = x
baseGap' :: CastDouble b => Flex a b -> Double
baseGap' = toDouble . baseGap
basis' :: CastDouble b => FlexChild a b -> Double
basis' = toDouble . basis
-- | The cross (opposite from `direction` axis) size of a row.
flexRowSize :: (a -> Double) -> [FlexChild a b] -> Double
flexRowSize cb row = maximum $ map (cb . flexInner) row
-- | The cross (opposite from `direction` axis) size of all rows.
flexRowsSize :: (a -> Double) -> Flex a Double -> Double
flexRowsSize cb Flex { crossGap = gap, children = kids } =
sum $ intersperse gap $ flexRowSize cb `map` kids
justifyOffset, justifySpacing :: Double -> [Double] -> Double -> Justification -> Double
-- | How far right to shift some elements to achieve desired justification.
justifyOffset _ _ _ JStart = 0
justifyOffset outersize ks g JEnd = outersize - innersize g ks
justifyOffset outersize ks g JCenter = half $ outersize - innersize g ks
justifyOffset _ _ _ JSpaceBetween = 0
justifyOffset outersize ks g JSpaceAround =
half $ (outersize - innersize g ks)/length' ks
justifyOffset _ ks _ _ | length ks <= 1 = 0 -- No gaps to space, avoid numeric errors.
justifyOffset size ks g JSpaceEvenly = (size - innersize g ks)/(length' ks + 1)
-- | How much space to add between elements.
justifySpacing size ks g JSpaceBetween = (size - innersize g ks)/(length' ks - 1)
justifySpacing size ks g JSpaceAround = (size - innersize g ks)/length' ks
justifySpacing size ks g JSpaceEvenly = (size - innersize g ks)/(length' ks + 1)
justifySpacing _ _ _ _ = 0
-- | Position new positions for the given items according to the given justification.
flexJustify :: (a -> Double) -> Double -> [a] -> Double -> Justification -> [(Double, a)]
flexJustify cb size kids gap just = inner kids offs
where
offs = justifyOffset size kids' gap just
spacing = justifySpacing size kids' gap just
kids' = map cb kids
inner (k:ks) start = (start, k):inner ks (start + cb k + gap)
inner [] _ = []
-- | How far right to shift some elements to achieve desired alignment.
alignOffset :: Double -> Double -> Alignment -> Double
alignOffset _ _ AlStretch = 0 -- Needs special handling elsewhere
alignOffset _ _ AlStart = 0
alignOffset outer inner AlEnd = outer - inner
alignOffset outer inner AlCenter = half $ outer - inner
alignOffset outer inner AlBaseline = half $ outer - inner -- FIXME: Implement properly!
-- | Sum given sizes with a specified gap between them.
innersize gap = sum . intersperse gap
-- | divide by 2, can be syntactically in certain circumstances.
half = (/2)
-- | length of an list, as a double.
length' :: [a] -> Double
length' = toEnum . length
------
--- Mapping Box Model axes <-> Flex Box axes
------
outerMinMain, outerMain, outerMaxMain :: Num m => PaddedBox m m -> Direction -> m
outerMinMain box Row = minWidth box
outerMinMain box Column = minHeight box
outerMain box Row = width box
outerMain box Column = height box
outerMaxMain box Row = maxWidth box
outerMaxMain box Column = maxHeight box
outerMinCross, outerCross, outerMaxCross :: Num m => PaddedBox m m -> Direction -> m
outerMinCross box Row = minHeight box
outerMinCross box Column = minWidth box
outerCross box Row = height box
outerCross box Column = width box
outerMaxCross box Row = maxHeight box
outerMaxCross box Column = maxWidth box
innerMinMain, innerMain, innerMaxMain :: Num m => PaddedBox m m -> Direction -> m
innerMinMain box = sizeMain $ B.min box
innerMain box = sizeMain $ B.size box
innerMaxMain box = sizeMain $ B.max box
innerMinCross, innerCross, innerMaxCross :: Num m => PaddedBox m m -> Direction -> m
innerMinCross box = sizeCross $ B.min box
innerCross box = sizeCross $ B.size box
innerMaxCross box = sizeCross $ B.max box
sizeMain, sizeCross :: Num m => Size m m -> Direction -> m
sizeMain self Row = inline self
sizeMain self Column = block self
sizeCross self Row = block self
sizeCross self Column = inline self
-- | Compute the size bounds of a flexbox.
flexGetBox :: (Zero m, CastDouble m, Zero n, CastDouble n) =>
(a -> PaddedBox Double Double) -> Flex a m -> PaddedBox m n
flexGetBox cb self = zero {
B.min = flexMaxBasis self' `size` flexRowsSize (cb' innerMinCross) self',
B.max = fromRational infinity `size` fromRational infinity,
B.nat = flexSumBasis self' `size` flexRowsSize (cb' innerCross) self',
B.size = flexSumBasis self' `size` flexRowsSize (cb' innerCross) self'
} where
size main cross
| Row <- direction self = fromDouble main `Size` fromDouble cross
| otherwise = fromDouble cross `Size` fromDouble main
cb' cb_ = flip cb_ (direction self) . cb
self' = flexResolve (innerMain . cb) 0 self
-- | Split a flexbox over multiple pages.
flexSplit :: (a -> Size Double Double) -> Double -> Double -> Flex a Double ->
(Flex a Double, Flex a Double)
flexSplit cb h _ self@Flex { direction = Row, pageWidth = w } =
(self' { children = page0 }, self' { children = page1 })
where
self' = flexWrap self w
(page0, page1) = splitRows (-crossGap self) $ children self
splitRows start (row:rows)
| start >= h = ([], row:rows)
| otherwise =
let (rows', rest) = flip splitRows rows $
start + crossGap self + flexRowSize (inline . cb) row
in (row:rows', rest)
splitRows _ [] = ([], [])
flexSplit cb h h' self@Flex { direction = Column, pageWidth = w }
| measure h = (flexWrap self h, self { children = [] })
-- If it fits on neither page... Row-direction is more versatile!
| not $ measure h' = flexSplit cb h h' self { direction = Row }
| otherwise = (self { children = [] }, flexWrap self h')
where
measure space = (block . cb) `flexRowsSize` flexWrap self space <= w
-- | Compute final position of a flexbox's children.
flexPosition :: ((Double, Double) -> a -> b) -> (a -> Size Double Double) ->
(Double, Double) -> Size Double Double ->
Flex a Double -> Flex b Double
flexPosition cb cb' (x,y) size self@Flex { direction = dir } = self {
children = map rowPosition $ flexJustify rowsize (sizeCross size dir)
(children self) (crossGap self) (justify self)
} where
rowsize = flexRowSize $ flip sizeCross dir . cb'
-- TODO: Handle stretch properly
rowPosition (rpos, row) =
let rsize = flexRowSize (flip sizeCross dir . cb') row
in map (alignChild rsize rpos) $ flexJustify basis rsize row
(baseGap self) (fromMaybe JSpaceAround $ alignLines self)
alignChild rsize rpos (kpos, kid@FlexChild {
flexInner = kid', alignment = align'
}) = kid {
flexInner = flip cb kid' $ sz kpos $
rpos + alignOffset rsize (flip sizeCross dir $ cb' kid') align'
}
sz m c | Row <- direction self = (x + m, y + c)
| otherwise = (x + c, y + m)