~alcinnz/CatTrap

ref: cdc350349a9cf2f83b74014a0bd7c264c67c8c79 CatTrap/Graphics/Layout/Flex.hs -rw-r--r-- 10.9 KiB
cdc35034 — Adrian Cochrane Fixes to traverse & retrieve laid out text! 10 months ago
                                                                                
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
7301a489 Adrian Cochrane
4afd3f9a Adrian Cochrane
7301a489 Adrian Cochrane
4afd3f9a Adrian Cochrane
7301a489 Adrian Cochrane
bc72114a Adrian Cochrane
7301a489 Adrian Cochrane
4afd3f9a Adrian Cochrane
7301a489 Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
972a1386 Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
8fb3f54a Adrian Cochrane
4afd3f9a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
5a9105c7 Adrian Cochrane
1a650ede Adrian Cochrane
5a9105c7 Adrian Cochrane
bc72114a Adrian Cochrane
5a9105c7 Adrian Cochrane
8fb3f54a Adrian Cochrane
5a9105c7 Adrian Cochrane
8fb3f54a Adrian Cochrane
5a9105c7 Adrian Cochrane
1a650ede Adrian Cochrane
8fb3f54a Adrian Cochrane
1a650ede Adrian Cochrane
8fb3f54a Adrian Cochrane
972a1386 Adrian Cochrane
8fb3f54a Adrian Cochrane
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
module Graphics.Layout.Flex where

import Graphics.Layout.Box as B (Length(..), lowerLength, Size(..), PaddedBox(..),
        maxWidth, width, minWidth, maxHeight, height, minHeight, CastDouble(..), Zero(..))
import Data.List (intersperse)
import GHC.Real (infinity)
import Data.Maybe (fromMaybe)

data FlexParent a b = FlexParent {
    direction :: Direction,
    reverseRows :: Bool,
    wrap :: FlexWrapping,
    justify :: Justification,
    alignLines :: Maybe Justification, -- `Nothing` is "stretch"
    baseGap :: b,
    crossGap :: b,
    children :: [[FlexChild a b]], -- 2D list to store lines once split.
    pageWidth :: Double -- Pagination argument
} deriving (Eq, Show, Read)
data FlexChild a b = FlexChild {
    grow :: Double,
    shrink :: Double,
    basis :: b,
    alignment :: Alignment,
    flexInner :: a
} deriving (Eq, Show, Read)

data Direction = Row | Column deriving (Eq, Show, Read)
data FlexWrapping = NoWrap | Wrap | WrapReverse deriving (Eq, Show, Read)
data Justification = JStart | JEnd | JCenter | JSpaceBetween | JSpaceAround | JSpaceEvenly
    deriving (Eq, Show, Read)
data Alignment = AlStretch | AlStart | AlEnd | AlCenter | AlBaseline
    deriving (Eq, Show, Read)

flexMap :: (a -> b) -> FlexParent a c -> FlexParent b c
flexMap cb self = FlexParent {
    direction = direction self, reverseRows = reverseRows self, wrap = wrap self,
    justify = justify self, alignLines = alignLines self,
    baseGap = baseGap self, crossGap = crossGap self, pageWidth = pageWidth self,
    children = [[FlexChild {
        grow = grow kid, shrink = shrink kid, basis = basis kid,
        alignment = alignment kid,
        flexInner = cb $ flexInner kid -- The important line!
    } | kid <- row] | row <- children self]
  }
flexResolve :: CastDouble b => (a -> Direction -> Double) -> Double ->
        FlexParent a b -> FlexParent a Double
flexResolve cb size self = FlexParent {
    direction = direction self, reverseRows = reverseRows self, wrap = wrap self,
    justify = justify self, alignLines = alignLines self,
    baseGap = toDoubleWithin size $ baseGap self,
    crossGap = toDoubleWithin size $ crossGap self,
    pageWidth = pageWidth self,
    children = [[FlexChild {
        grow = grow kid, shrink = shrink kid,
        basis = toDoubleWithinAuto (flexInner kid `cb` direction self) size $ basis kid,
        alignment = alignment kid, flexInner = flexInner kid
    } | kid <- row] | row <- children self]
  }

flexMaxBasis :: FlexParent a Double -> Double
flexMaxBasis self = maximum [basis child | row <- children self, child <- row]
flexSumBasis :: FlexParent a Double -> Double
flexSumBasis self = maximum [Prelude.sum $
        intersperse (baseGap self) $ map basis row | row <- children self]

-- NOTE: shrink propery may yield negative sizes. Caller will want to enforce min-sizes.
flexWrap :: CastDouble b => FlexParent a b -> Double -> FlexParent a b
flexWrap self size
    | NoWrap <- wrap self = post self
    | Wrap <- wrap self = post self'
    | WrapReverse <- wrap self = post self' { children=reverse $ children self' }
  where
    self' = self {
        children = concatMap wrapRow $ children self
    }
    wrapRow :: CastDouble b => [FlexChild a b] -> [[FlexChild a b]]
    wrapRow [] = []
    wrapRow kids@(kid:_) = let (row, rest) = splitRow' kids $ basis' kid
        in row:wrapRow rest
    splitRow, splitRow' :: CastDouble b => [FlexChild a b] -> Double ->
            ([FlexChild a b], [FlexChild a b])
    -- This wrapper function ensures we don't end up with empty rows, or infinite loops.
    splitRow' (kid:kids) end =
        let (kids', rest) = splitRow kids (end + baseGap' self + basis' kid)
        in (kid:kids', rest)
    splitRow' [] _ = ([], [])
    splitRow (kid:kids) end
        | end > size = ([], kid:kids)
        | otherwise = let (kids', rest) = splitRow kids (end + baseGap' self + basis' kid)
            in (kid:kids', rest)
    splitRow [] _ = ([], [])

    post :: CastDouble b => FlexParent a b -> FlexParent a b
    post flex
        | reverseRows self = post' flex { children = map reverse $ children flex }
        | otherwise = post' flex
    post' :: CastDouble b => FlexParent a b -> FlexParent a b
    post' flex = flex { children = map resizeRow $ children flex }
    resizeRow :: CastDouble b => [FlexChild a b] -> [FlexChild a b]
    resizeRow row
        | rowSize > size = [kid {
                basis = fromDouble $ basis' kid - shrink kid * nanguard sfr
            } | kid <- row]
        | rowSize < size = [kid {
                basis = fromDouble $ basis' kid + grow kid * nanguard gfr
            } | kid <- row]
        | otherwise = row
      where
        rowSize = Prelude.sum $ intersperse (baseGap' self) $ map basis' row
        sfr = (rowSize - size)/(Prelude.sum $ map shrink row)
        gfr = (size - rowSize)/(Prelude.sum $ map grow row)
        nanguard x | isNaN x = 0
            | isInfinite x = 0
            | otherwise = x
    baseGap' :: CastDouble b => FlexParent a b -> Double
    baseGap' = toDouble . baseGap
    basis' :: CastDouble b => FlexChild a b -> Double
    basis' = toDouble . basis

flexRowSize :: (a -> Double) -> [FlexChild a b] -> Double
flexRowSize cb row = maximum $ map (cb . flexInner) row
flexRowsSize :: (a -> Double) -> FlexParent a Double -> Double
flexRowsSize cb FlexParent { crossGap = gap, children = kids } =
    sum $ intersperse gap $ flexRowSize cb `map` kids

justifyOffset, justifySpacing :: Double -> [Double] -> Double -> Justification -> Double
justifyOffset _ _ _ JStart = 0
justifyOffset outersize ks g JEnd = outersize - innersize g ks
justifyOffset outersize ks g JCenter = half $ outersize - innersize g ks
justifyOffset _ _ _ JSpaceBetween = 0
justifyOffset outersize ks g JSpaceAround =
    half $ (outersize - innersize g ks)/length' ks
justifyOffset _ ks _ _ | length ks <= 1 = 0 -- No gaps to space, avoid numeric errors.
justifyOffset size ks g JSpaceEvenly = (size - innersize g ks)/(length' ks + 1)
justifySpacing size ks g JSpaceBetween = (size - innersize g ks)/(length' ks - 1)
justifySpacing size ks g JSpaceAround = (size - innersize g ks)/length' ks
justifySpacing size ks g JSpaceEvenly = (size - innersize g ks)/(length' ks + 1)
justifySpacing _ _ _ _ = 0

flexJustify :: (a -> Double) -> Double -> [a] -> Double -> Justification -> [(Double, a)]
flexJustify cb size kids gap just = inner kids offs
  where
    offs = justifyOffset size kids' gap just
    spacing = justifySpacing size kids' gap just
    kids' = map cb kids
    inner (k:ks) start = (start, k):inner ks (start + cb k + gap)
    inner [] _ = []

alignOffset :: Double -> Double -> Alignment -> Double
alignOffset _ _ AlStretch = 0 -- Needs special handling elsewhere
alignOffset _ _ AlStart = 0
alignOffset outer inner AlEnd = outer - inner
alignOffset outer inner AlCenter = half $ outer - inner
alignOffset outer inner AlBaseline = half $ outer - inner -- FIXME: Implement properly!

innersize gap = sum . intersperse gap
half = (/2)
length' :: [a] -> Double
length' = toEnum . length

------
--- Mapping Box Model axes <-> Flex Box axes
------

outerMinMain, outerMain, outerMaxMain :: Num m => PaddedBox m m -> Direction -> m
outerMinMain box Row = minWidth box
outerMinMain box Column = minHeight box
outerMain box Row = width box
outerMain box Column = height box
outerMaxMain box Row = maxWidth box
outerMaxMain box Column = maxHeight box

outerMinCross, outerCross, outerMaxCross :: Num m => PaddedBox m m -> Direction -> m
outerMinCross box Row = minHeight box
outerMinCross box Column = minWidth box
outerCross box Row = height box
outerCross box Column = width box
outerMaxCross box Row = maxHeight box
outerMaxCross box Column = maxWidth box

innerMinMain, innerMain, innerMaxMain :: Num m => PaddedBox m m -> Direction -> m
innerMinMain box = sizeMain $ B.min box
innerMain box = sizeMain $ B.size box
innerMaxMain box = sizeMain $ B.max box

innerMinCross, innerCross, innerMaxCross :: Num m => PaddedBox m m -> Direction -> m
innerMinCross box = sizeCross $ B.min box
innerCross box = sizeCross $ B.size box
innerMaxCross box = sizeCross $ B.max box

sizeMain, sizeCross :: Num m => Size m m -> Direction -> m
sizeMain self Row = inline self
sizeMain self Column = block self
sizeCross self Row = block self
sizeCross self Column = inline self

flexGetBox :: (Zero m, CastDouble m, Zero n, CastDouble n) =>
    (a -> PaddedBox Double Double) -> FlexParent a m -> PaddedBox m n
flexGetBox cb self = zero {
    B.min = flexMaxBasis self' `size` flexRowsSize (cb' innerMinCross) self',
    B.max = fromRational infinity `size` fromRational infinity,
    B.nat = flexSumBasis self' `size` flexRowsSize (cb' innerCross) self',
    B.size = flexSumBasis self' `size` flexRowsSize (cb' innerCross) self'
  } where
    size main cross
        | Row <- direction self = fromDouble main `Size` fromDouble cross
        | otherwise = fromDouble cross `Size` fromDouble main
    cb' cb_ = flip cb_ (direction self) . cb
    self' = flexResolve (innerMain . cb) 0 self

flexSplit :: (a -> Size Double Double) -> Double -> Double -> FlexParent a Double ->
    (FlexParent a Double, FlexParent a Double)
flexSplit cb h _ self@FlexParent { direction = Row, pageWidth = w } =
    (self' { children = page0 }, self' { children = page1 })
  where
    self' = flexWrap self w
    (page0, page1) = splitRows (-crossGap self) $ children self
    splitRows start (row:rows)
        | start >= h = ([], row:rows)
        | otherwise =
            let (rows', rest) = flip splitRows rows $
                    start + crossGap self + flexRowSize (inline . cb) row
            in (row:rows', rest)
    splitRows _ [] = ([], [])
flexSplit cb h h' self@FlexParent { direction = Column, pageWidth = w }
    | measure h = (flexWrap self h, self { children = [] })
    -- If it fits on neither page... Row-direction is more versatile!
    | not $ measure h' = flexSplit cb h h' self { direction = Row }
    | otherwise = (self { children = [] }, flexWrap self h')
  where
    measure space = (block . cb) `flexRowsSize` flexWrap self space <= w

flexPosition :: ((Double, Double) -> a -> b) -> (a -> Size Double Double) ->
        (Double, Double) -> Size Double Double ->
        FlexParent a Double -> FlexParent b Double
flexPosition cb cb' (x,y) size self@FlexParent { direction = dir } = self {
    children = map rowPosition $ flexJustify rowsize (sizeCross size dir)
            (children self) (crossGap self) (justify self)
  } where
    rowsize = flexRowSize $ flip sizeCross dir . cb'
    -- TODO: Handle stretch properly
    rowPosition (rpos, row) =
        let rsize = flexRowSize (flip sizeCross dir . cb') row
        in map (alignChild rsize rpos) $ flexJustify basis rsize row
                (baseGap self) (fromMaybe JSpaceAround $ alignLines self)
    alignChild rsize rpos (kpos, kid@FlexChild {
        flexInner = kid', alignment = align'
      }) = kid {
        flexInner = flip cb kid' $ sz kpos $
                rpos + alignOffset rsize (flip sizeCross dir $ cb' kid') align'
      }
    sz m c | Row <- direction self = (x + m, y + c)
        | otherwise = (x + c, y + m)