module Data.Text.ParagraphLayout.Internal.Plain
(Paragraph(..)
,ParagraphLayout(..)
,ParagraphOptions(..)
,SpanLayout(..)
,layoutPlain
)
where
import Control.Applicative (ZipList(ZipList), getZipList)
import Data.Int (Int32)
import Data.List (mapAccumL)
import Data.List.NonEmpty (NonEmpty((:|)))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Text.Foreign (lengthWord8)
import Data.Text.Glyphize
(Buffer(..)
,ContentType(ContentTypeUnicode)
,Direction(..)
,FontExtents(..)
,GlyphInfo
,GlyphPos
,defaultBuffer
,fontExtentsForDir
,shape
)
import Data.Text.ICU (LocaleName(Locale), breakCharacter, breakLine)
import qualified Data.Text.ICU as BreakStatus (Line)
import Data.Text.Internal (Text(Text))
import qualified Data.Text.Lazy as Lazy
import Data.Text.ParagraphLayout.Internal.Break
import Data.Text.ParagraphLayout.Internal.Fragment
import Data.Text.ParagraphLayout.Internal.LineHeight
import Data.Text.ParagraphLayout.Internal.Paragraph
import qualified Data.Text.ParagraphLayout.Internal.ProtoFragment as PF
import Data.Text.ParagraphLayout.Internal.Rect
import Data.Text.ParagraphLayout.Internal.ResolvedSpan (WithSpan(WithSpan))
import qualified Data.Text.ParagraphLayout.Internal.ResolvedSpan as RS
import Data.Text.ParagraphLayout.Internal.Run
import Data.Text.ParagraphLayout.Internal.Span
import Data.Text.ParagraphLayout.Internal.TextContainer
-- | Lay out a paragraph of plain, unidirectional text using a single font.
layoutPlain :: Paragraph -> ParagraphLayout
layoutPlain p@(Paragraph _ _ _ opts) = paragraphLayout sls
where
sls = map SpanLayout fragsBySpan
fragsBySpan = take (length spans) $ RS.splitBySpanIndex frags
frags = layoutAndAlignLines maxWidth $ spansToRunsWrapped spans
maxWidth = paragraphMaxWidth opts
spans = resolveSpans p
-- | Split a number of spans into a flat array of runs and add a wrapper
-- so that each run can be traced back to its originating span.
spansToRunsWrapped :: [RS.ResolvedSpan] -> [WithSpan Run]
spansToRunsWrapped ss = concat $ map spanToRunsWrapped ss
-- | Split a span into runs and add a wrapper
-- so that each run can be traced back to its originating span.
spanToRunsWrapped :: RS.ResolvedSpan -> [WithSpan Run]
spanToRunsWrapped s = map (WithSpan s) (spanToRuns s)
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a flat list of fragments positioned in both dimensions.
layoutAndAlignLines :: Int32 -> [WithSpan Run] -> [WithSpan Fragment]
layoutAndAlignLines maxWidth runs = frags
where
frags = concat fragsInLines
(_, fragsInLines) = mapAccumL positionLineH originY canonicalLines
canonicalLines = map canonicalOrder logicalLines
logicalLines = layoutLines maxWidth runs
originY = paragraphOriginY
-- | Reorder the given fragments from logical order to whatever order HarfBuzz
-- uses (LTR for horizontal text, TTB for vertical text), so that cluster order
-- is preserved even across runs.
canonicalOrder :: [WithSpan PF.ProtoFragment] -> [WithSpan PF.ProtoFragment]
canonicalOrder [] = []
canonicalOrder pfs@((WithSpan _ headPF):_) = case PF.direction headPF of
-- TODO: Update for bidi.
Just DirLTR -> pfs
Just DirRTL -> reverse pfs
Just DirTTB -> pfs
Just DirBTT -> reverse pfs
-- If no guess can be made, use LTR.
-- TODO: Add explicit direction to input interface.
Nothing -> pfs
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a two-dimensional list of fragments positioned along the
-- horizontal axis.
layoutLines :: Int32 -> [WithSpan Run] -> [[WithSpan PF.ProtoFragment]]
layoutLines maxWidth runs
| null rest
-- Everything fits. We are done.
= fitting : []
| otherwise
-- Something fits, the rest goes on the next line.
= fitting : layoutLines maxWidth rest
where
(fitting, rest) = layoutAndWrapRunsH maxWidth runs
-- TODO: Allow a run across multiple spans (e.g. if they only differ by colour).
-- | Position all the given horizontal fragments on the same line,
-- using `originY` as its top edge, and return the bottom edge for continuation.
--
-- Glyphs will be aligned by their ascent line, similar to the behaviour of
-- @vertical-align: top@ in CSS.
--
-- TODO: For rich text, allow other types of vertical alignment.
positionLineH :: Int32 -> [WithSpan PF.ProtoFragment] ->
(Int32, [WithSpan Fragment])
positionLineH originY pfs = (nextY, frags)
where
-- A line with no glyphs will be considered to have zero height.
-- This can happen when line breaking produces a line that contains
-- onls spaces.
nextY = if null rects then originY else maximum $ map y_min rects
rects = map (\(WithSpan _ r) -> fragmentRect r) frags
frags = snd $ mapAccumL (positionFragmentH originY) originX pfs
originX = paragraphOriginX
-- | Position the given horizontal fragment on a line,
-- using `originY` as its top edge and `originX` as its left edge,
-- returning the X coordinate of its right edge for continuation.
positionFragmentH ::
Int32 -> Int32 -> WithSpan PF.ProtoFragment -> (Int32, WithSpan Fragment)
positionFragmentH originY originX (WithSpan rs pf) = (nextX, WithSpan rs frag)
where
nextX = originX + PF.advance pf
frag = Fragment rect (penX, penY) (PF.glyphs pf)
rect = Rect originX originY (PF.advance pf) (-lineHeight)
penX = 0
penY = descent + leading `div` 2 - lineHeight
lineHeight = case RS.spanLineHeight rs of
Normal -> normalLineHeight
Absolute h -> h
leading = lineHeight - normalLineHeight
normalLineHeight = ascent + descent
ascent = ascender extents
descent = - descender extents
extents = fontExtentsForDir font (PF.direction pf)
font = RS.spanFont rs
-- | Calculate layout for multiple horizontal runs, breaking them as necessary
-- to fit as much content as possible without exceeding the maximum line width,
-- and return the remaining runs to be placed on other lines.
layoutAndWrapRunsH :: Int32 -> [WithSpan Run] ->
([WithSpan PF.ProtoFragment], [WithSpan Run])
layoutAndWrapRunsH maxWidth runs = NonEmpty.head $ validLayouts
where
validLayouts = dropWhile1 tooLong layouts
tooLong (pfs, _) = totalAdvances pfs > maxWidth
layouts = NonEmpty.map layoutFst splits
layoutFst (runs1, runs2) = (layout runs1, runs2)
layout runs1 = layoutRunsH $ trimTextsEnd isEndSpace runs1
splits = noSplit :| (lSplits ++ cSplits)
noSplit = (runs, [])
lSplits = filter hasContent $ lineSplits runs
cSplits = filter hasContent $ characterSplits runs
hasContent = not . null . fst
-- | The suffix remaining after removing the longest prefix of the list for
-- which the predicate holds, except always including at least the last element
-- of the original list.
dropWhile1 :: (a -> Bool) -> NonEmpty a -> NonEmpty a
dropWhile1 p list = case NonEmpty.uncons list of
(_, Nothing) -> list
(x, Just xs) -> if p x
then dropWhile1 p xs
else list
-- | Calculate layout for multiple horizontal runs on the same line, without
-- any breaking.
layoutRunsH :: [WithSpan Run] -> [WithSpan PF.ProtoFragment]
layoutRunsH runs = map layoutRunH runs
-- | Sum of all advances within the given fragments.
totalAdvances :: [WithSpan PF.ProtoFragment] -> Int32
totalAdvances pfs = sum $ map (\(WithSpan _ pf) -> PF.advance pf) pfs
-- | Recursive function for finding all possible ways to split a list of runs
-- into two on a valid line-breaking boundary, including the start of the first
-- run and excluding the end of the last run.
--
-- The results in the form (prefix, suffix) will be ordered from the longest
-- prefix to shortest.
lineSplits :: [WithSpan Run] -> [([WithSpan Run], [WithSpan Run])]
lineSplits xs = lineSplits' [] (reverse xs)
lineSplits' :: [WithSpan Run] -> [WithSpan Run] ->
[([WithSpan Run], [WithSpan Run])]
lineSplits' _ [] = []
lineSplits' closed (x:xs) = splits ++ lineSplits' (x:closed) xs
where
splits = map mapFunc $ runLineSplits x
mapFunc ((x1, x2), _) =
(reverse $ collapse $ x1 :| xs, collapse $ x2 :| closed)
-- | Recursive function for finding all possible ways to split a list of runs
-- into two on a character boundary, including the start of the first run and
-- excluding the end of the last run.
--
-- The results in the form (prefix, suffix) will be ordered from the longest
-- prefix to shortest.
characterSplits :: [WithSpan Run] -> [([WithSpan Run], [WithSpan Run])]
characterSplits xs = characterSplits' [] (reverse xs)
characterSplits' :: [WithSpan Run] -> [WithSpan Run] ->
[([WithSpan Run], [WithSpan Run])]
characterSplits' _ [] = []
characterSplits' closed (x:xs) = splits ++ characterSplits' (x:closed) xs
where
splits = map mapFunc $ runCharacterSplits x
mapFunc ((x1, x2), _) =
(reverse $ collapse $ x1 :| xs, collapse $ x2 :| closed)
-- | Calculate layout for the given horizontal run and attach extra information.
layoutRunH :: WithSpan Run -> WithSpan PF.ProtoFragment
layoutRunH (WithSpan rs run) = WithSpan rs pf
where
pf = PF.protoFragmentH dir glyphs
glyphs = shapeRun (WithSpan rs run)
dir = runDirection run
-- | Calculate layout for the given run independently of its position.
shapeRun :: WithSpan Run -> [(GlyphInfo, GlyphPos)]
shapeRun (WithSpan rs run) = shape font buffer features
where
font = RS.spanFont rs
-- TODO: Set beginsText / endsText.
buffer = defaultBuffer
{ text = Lazy.fromStrict $ runText run
, contentType = Just ContentTypeUnicode
, direction = runDirection run
, script = runScript run
, language = Just $ RS.spanLanguage rs
}
features = []
resolveSpans :: Paragraph -> [RS.ResolvedSpan]
resolveSpans p@(Paragraph arr pStart spans pOpts) = do
let sBounds = paragraphSpanBounds p
let pEnd = NonEmpty.last sBounds
let sStarts = NonEmpty.init sBounds
let sLengths = map spanLength spans
(i, s, sStart, sLen) <- getZipList $ (,,,)
<$> ZipList [0..]
<*> ZipList spans
<*> ZipList sStarts
<*> ZipList sLengths
let lang = spanLanguage $ spanOptions s
let lBreaks = paragraphLineBreaks p pEnd lang
let cBreaks = paragraphCharacterBreaks p pEnd lang
return RS.ResolvedSpan
{ RS.spanIndex = i
, RS.spanOffsetInParagraph = sStart - pStart
-- TODO: Consider adding checks for array bounds.
, RS.spanText = Text arr sStart sLen
, RS.spanFont = paragraphFont pOpts
, RS.spanLineHeight = paragraphLineHeight pOpts
, RS.spanLanguage = lang
, RS.spanLineBreaks = subOffsetsDesc (sStart - pStart) lBreaks
, RS.spanCharacterBreaks = subOffsetsDesc (sStart - pStart) cBreaks
}
paragraphLineBreaks :: Paragraph -> Int -> String -> [(Int, BreakStatus.Line)]
paragraphLineBreaks (Paragraph arr off _ _) end lang =
breaksDesc (breakLine (localeFromLanguage lang)) paragraphText
where
paragraphText = Text arr off (end - off)
paragraphCharacterBreaks :: Paragraph -> Int -> String -> [(Int, ())]
paragraphCharacterBreaks (Paragraph arr off _ _) end lang =
breaksDesc (breakCharacter (localeFromLanguage lang)) paragraphText
where
paragraphText = Text arr off (end - off)
-- | Split the given run at every valid line break position.
runLineSplits :: WithSpan Run ->
[((WithSpan Run, WithSpan Run), BreakStatus.Line)]
runLineSplits r = map split $ runLineBreaks r
where
split (i, status) = (splitTextAt8 i r, status)
runLineBreaks :: WithSpan Run -> [(Int, BreakStatus.Line)]
runLineBreaks (WithSpan rs run) = dropWhile (not . valid) $
subOffsetsDesc (runOffsetInSpan run) $ RS.spanLineBreaks rs
where
valid (off, _) = off < runLength
runLength = lengthWord8 $ getText run
-- | Split the given run before every character.
runCharacterSplits :: WithSpan Run -> [((WithSpan Run, WithSpan Run), ())]
runCharacterSplits r = map split $ runCharacterBreaks r
where
split (i, ()) = (splitTextAt8 i r, ())
runCharacterBreaks :: WithSpan Run -> [(Int, ())]
runCharacterBreaks (WithSpan rs run) = dropWhile (not . valid) $
subOffsetsDesc (runOffsetInSpan run) $ RS.spanCharacterBreaks rs
where
valid (off, _) = off < runLength
runLength = lengthWord8 $ getText run
-- | Predicate for characters that can be potentially removed from the end of
-- a line according to the CSS Text Module.
isEndSpace :: Char -> Bool
isEndSpace c = c `elem` [' ', '\t', '\x1680']
-- TODO: Identify and correct for differences between the two.
localeFromLanguage :: String -> LocaleName
localeFromLanguage x = Locale x