-- | Implementation of paragraph layout, decoupled from external interfaces.
module Data.Text.ParagraphLayout.Internal.Layout
( FragmentWithSpan
, layoutAndAlignLines
)
where
import Data.Foldable (toList)
import Data.Int (Int32)
import Data.List (mapAccumL)
import Data.List.NonEmpty (NonEmpty ((:|)), nonEmpty, (<|))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (fromMaybe)
import Data.Semigroup (sconcat)
import Data.Text.Foreign (lengthWord8)
import Data.Text.Glyphize
( Buffer (..)
, ContentType (ContentTypeUnicode)
, Direction (DirLTR, DirRTL, DirTTB, DirBTT)
, FontExtents (..)
, GlyphInfo
, GlyphPos
, defaultBuffer
, fontExtentsForDir
, shape
)
import qualified Data.Text.ICU as BreakStatus (Line (Hard))
import qualified Data.Text.Lazy as Lazy
import Data.Text.ParagraphLayout.Internal.AncestorBox
import Data.Text.ParagraphLayout.Internal.ApplyBoxes
import Data.Text.ParagraphLayout.Internal.BiDiReorder
import Data.Text.ParagraphLayout.Internal.BoxOptions
import Data.Text.ParagraphLayout.Internal.Break
import Data.Text.ParagraphLayout.Internal.Fragment
import Data.Text.ParagraphLayout.Internal.LineHeight
import Data.Text.ParagraphLayout.Internal.ParagraphAlignment
import Data.Text.ParagraphLayout.Internal.ParagraphExtents
import qualified Data.Text.ParagraphLayout.Internal.ProtoFragment as PF
import qualified Data.Text.ParagraphLayout.Internal.ProtoLine as PL
import Data.Text.ParagraphLayout.Internal.Rect
import qualified Data.Text.ParagraphLayout.Internal.ResolvedBox as RB
import qualified Data.Text.ParagraphLayout.Internal.ResolvedSpan as RS
import Data.Text.ParagraphLayout.Internal.Run
import Data.Text.ParagraphLayout.Internal.SplitList
import Data.Text.ParagraphLayout.Internal.TextContainer
import Data.Text.ParagraphLayout.Internal.TextOptions
import qualified Data.Text.ParagraphLayout.Internal.VerticalOffsets as VO
import Data.Text.ParagraphLayout.Internal.WithSpan
-- This is redundant.
-- TODO: Consider using `ResolvedSpan` as `fragmentUserData`, then swapping it
-- for the actual `spanUserData` before returning it to the user.
type ProtoFragmentWithSpan d = WithSpan d PF.ProtoFragment
type FragmentWithSpan d = WithSpan d (Fragment d)
type ProtoFragmentWithBoxes d = WithBoxes d (ProtoFragmentWithSpan d)
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a flat list of fragments positioned in both dimensions.
layoutAndAlignLines
:: Direction
-> ParagraphAlignment
-> Int32
-> NonEmpty (WithSpan d Run)
-> [FragmentWithSpan d]
layoutAndAlignLines dir align maxWidth runs = frags
where
frags = concatMap toList fragsInLines
(_, fragsInLines) = mapAccumL positionLine originY numberedLines
positionLine = positionLineH dir align maxWidth
numberedLines = zip [1 ..] canonicalLines
canonicalLines = fmap reorderProtoFragments visibleLines
visibleLines = filter PL.visible logicalLines
logicalLines = toList $ layoutLines maxWidth [] runs
originY = paragraphOriginY
reorderProtoFragments :: PL.ProtoLine NonEmpty d -> PL.ProtoLine NonEmpty d
reorderProtoFragments pl@(PL.ProtoLine { PL.protoFragments = pfs }) =
pl { PL.protoFragments = reorder pfs }
-- | Create a multi-line layout from the given runs, splitting them as
-- necessary to fit within the requested line width.
--
-- The output is a two-dimensional list of fragments positioned along the
-- horizontal axis.
layoutLines :: Int32 -> [RB.ResolvedBox d] -> NonEmpty (WithSpan d Run) ->
NonEmpty (PL.ProtoLine NonEmpty d)
layoutLines maxWidth openBoxes runs = case nonEmpty rest of
-- Everything fits. We are done.
Nothing -> fitting :| []
-- Something fits, the rest goes on the next line.
Just runs' -> fitting <| layoutLines maxWidth openBoxes' runs'
where
(fitting, rest) = layoutAndWrapRunsH maxWidth openBoxes runs
-- Update the list of open boxes using the logically last run
-- on this line.
openBoxes' = lastSpanBoxes $ PL.protoFragments fitting
-- | Position all the given horizontal fragments on the same line,
-- using @originY@ as its top edge, and return the bottom edge for continuation.
positionLineH
:: Direction
-> ParagraphAlignment
-> Int32
-> Int32
-> (Int, PL.ProtoLine NonEmpty d)
-> (Int32, NonEmpty (FragmentWithSpan d))
positionLineH dir align maxWidth originY (num, pl) = (nextY, frags)
where
nextY = minimum $ fmap y_min rects
rects = fmap (\ (WithSpan _ r) -> fragmentRect r) frags
(_, frags) = mapAccumL (positionFragmentH num) originX wpfs
wpfs = PL.applyBoxes $ verticalAlignment originY pl
originX = paragraphOriginX + if lineWidth > maxWidth
then overflowingLineOffset dir (lineWidth - maxWidth)
else fittingLineOffset align dir (maxWidth - lineWidth)
lineWidth = PL.width pl
verticalAlignment :: Int32 -> PL.ProtoLine NonEmpty d ->
PL.ProtoLine NonEmpty d
verticalAlignment originY pl = PL.mapFragments setOrigin pl
where
bottomY = originY - finalLineHeight
finalLineHeight = fittingTop - fittingBottom
-- Firefox-like behaviour:
-- First extend the line upwards to fit bottom-aligned boxes,
-- then extend the line downwards to fit top-aligned boxes.
fittingTop = maximum $ (:) rootTop $
map ((rootBottom +) . boxHeight) bottomAlignedBoxes
fittingBottom = minimum $ (:) rootBottom $
map ((fittingTop -) . boxHeight) topAlignedBoxes
rootTop = maximum $ fmap VO.layoutTop rootVOs
rootBottom = minimum $ fmap VO.layoutBottom rootVOs
rootVOs = map snd $ filter underRoot $ toList vors
rootOffset = originY - fittingTop
boxHeight b = boxTop b - boxBottom b
boxTop b = maximum $ map VO.layoutTop $ boxVOs b
boxBottom b = minimum $ map VO.layoutBottom $ boxVOs b
boxVOs b = map snd $ filter (underBox b) $ toList vors
-- How much to shift from baseline 0 so that layoutTop = originY?
boxTopOffset b = originY - boxTop b
-- How much to shift from baseline 0 so that layoutBottom = bottomY?
boxBottomOffset b = bottomY - boxBottom b
underRoot (Nothing, _) = True
underRoot (Just _, _) = False
underBox _ (Nothing, _) = False
underBox b (Just x, _) = b == x
boxesOnLine = foldr RB.union [] $ fmap fragBoxes $ PL.protoFragments pl
topAlignedBoxes = filter topAligned boxesOnLine
bottomAlignedBoxes = filter bottomAligned boxesOnLine
topAligned rb =
boxVerticalAlignment (RB.boxOptions rb) == AlignLineTop
bottomAligned rb =
boxVerticalAlignment (RB.boxOptions rb) == AlignLineBottom
fragBoxes (WithSpan rs _) = RS.spanBoxes rs
vors = sconcat $ fmap vor $ PL.protoFragments pl
vor (WithSpan rs pf) =
verticalOffsetsRecursiveStruts
(PF.direction pf)
(RS.spanTextOptions rs)
(RS.spanBoxes rs)
setOrigin rs pf =
PF.mapVerticalOffsets (VO.alignBaseline (fragOffset rs pf)) pf
fragOffset rs pf = case NonEmpty.head (vor (WithSpan rs pf)) of
(Nothing, vo) -> rootOffset + VO.baseline vo
(Just b, vo) -> case boxVerticalAlignment $ RB.boxOptions b of
AlignLineTop -> boxTopOffset b + VO.baseline vo
AlignLineBottom -> boxBottomOffset b + VO.baseline vo
_ -> error "verticalAlignment: wrong box used as anchor"
-- | Inline offset of the first fragment on a line that overflows.
overflowingLineOffset :: Direction -> Int32 -> Int32
overflowingLineOffset DirLTR _ = 0
overflowingLineOffset DirTTB _ = 0
overflowingLineOffset DirRTL excess = -excess
-- TODO: Check if the sign needs to be flipped for vertical text.
overflowingLineOffset DirBTT excess = -excess
-- | Inline offset of the first fragment on a line with extra blank space.
fittingLineOffset :: ParagraphAlignment -> Direction -> Int32 -> Int32
fittingLineOffset AlignLeft _ = leftAlignOffset
fittingLineOffset AlignRight _ = rightAlignOffset
fittingLineOffset AlignCentreH _ = centreAlignOffset
fittingLineOffset AlignStart DirLTR = leftAlignOffset
fittingLineOffset AlignEnd DirLTR = rightAlignOffset
fittingLineOffset AlignStart DirRTL = rightAlignOffset
fittingLineOffset AlignEnd DirRTL = leftAlignOffset
-- For completeness, treat vertical directions as horizontal directions
-- rotated 90° clockwise, thus left becomes top and right becomes bottom.
-- TODO: Verify this when vertical text is implemented.
fittingLineOffset AlignStart DirTTB = leftAlignOffset
fittingLineOffset AlignEnd DirTTB = rightAlignOffset
fittingLineOffset AlignStart DirBTT = rightAlignOffset
fittingLineOffset AlignEnd DirBTT = leftAlignOffset
leftAlignOffset :: Int32 -> Int32
leftAlignOffset _ = 0
rightAlignOffset :: Int32 -> Int32
rightAlignOffset slack = slack
centreAlignOffset :: Int32 -> Int32
centreAlignOffset slack = slack `div` 2
-- | Position the given horizontal fragment on a line, using @originX@ as its
-- left edge, returning the X coordinate of its right edge for continuation.
positionFragmentH :: Int -> Int32 -> ProtoFragmentWithBoxes d ->
(Int32, FragmentWithSpan d)
positionFragmentH line originX (WithBoxes lbs (WithSpan rs pf) rbs) =
(nextX, WithSpan rs frag)
where
nextX = contentX + contentWidth + rightSpacing
contentX = originX + leftSpacing
contentWidth = PF.advance pf
leftSpacing = totalLeftSpacing bs
rightSpacing = totalRightSpacing bs
frag = Fragment
{ fragmentUserData = userData
, fragmentLine = line
, fragmentAncestorBoxes = bs
, fragmentContentRect = contentRect
, fragmentRect = rect
, fragmentPen = (penX, penY)
, fragmentGlyphs = (PF.glyphs pf)
}
userData = RS.spanUserData rs
bs = ancestorBoxes lbs rbs rs
contentRect = Rect contentX fontTop contentWidth (fontBottom - fontTop)
rect = Rect contentX layoutTop contentWidth (layoutBottom - layoutTop)
penX = 0
penY = baseline - layoutTop
VO.VerticalOffsets
{ VO.layoutTop = layoutTop
, VO.fontTop = fontTop
, VO.baseline = baseline
, VO.fontBottom = fontBottom
, VO.layoutBottom = layoutBottom
} = PF.verticalOffsets pf
ancestorBoxes
:: [RB.ResolvedBox d]
-> [RB.ResolvedBox d]
-> RS.ResolvedSpan d
-> [AncestorBox d]
ancestorBoxes leftBoxes rightBoxes rs = map ancestorBox $ RS.spanBoxes rs
where
ancestorBox b = case RB.boxDirection b of
DirLTR -> AncestorBox
{ boxUserData = RB.boxUserData b
, boxLeftEdge = leftEdge b
, boxRightEdge = rightEdge b
, boxStartEdge = leftEdge b
, boxEndEdge = rightEdge b
}
DirRTL -> AncestorBox
{ boxUserData = RB.boxUserData b
, boxLeftEdge = leftEdge b
, boxRightEdge = rightEdge b
, boxStartEdge = rightEdge b
, boxEndEdge = leftEdge b
}
_ -> AncestorBox
{ boxUserData = RB.boxUserData b
, boxLeftEdge = NoEdge
, boxRightEdge = NoEdge
, boxStartEdge = NoEdge
, boxEndEdge = NoEdge
}
leftEdge b = if b `elem` leftBoxes
then SpacedEdge $ RB.boxLeftSpacing b
else NoEdge
rightEdge b = if b `elem` rightBoxes
then SpacedEdge $ RB.boxRightSpacing b
else NoEdge
-- | Calculate layout for multiple horizontal runs, breaking them as necessary
-- to fit as much content as possible without exceeding the maximum line width,
-- and return the remaining runs to be placed on other lines.
layoutAndWrapRunsH
:: Int32
-> [RB.ResolvedBox d]
-> NonEmpty (WithSpan d Run)
-> (PL.ProtoLine NonEmpty d, [WithSpan d Run])
layoutAndWrapRunsH maxWidth prevOpenBoxes runs = NonEmpty.head $ validProtoLines
where
validProtoLines = dropWhile1 tooLong layouts
tooLong (pl, _) = PL.width pl > maxWidth
layouts = fmap fstToProtoLine splits
fstToProtoLine (runs1, runs2) =
(protoLine prevOpenBoxes (layoutRunsH runs1) runs2, runs2)
-- TODO: Consider optimising.
-- We do not need to look for soft breaks further than the
-- shortest hard break.
-- TODO: Untrimmed whitespace should be reset to paragraph BiDi level
-- per rule L1.
splits = hardSplit runs :| softSplits runs
-- | Construct a `PL.ProtoLine`, peeking at the text run on the following line
-- to determine `PL.nextOpenBoxes`.
protoLine
:: [RB.ResolvedBox d]
-> NonEmpty (ProtoFragmentWithSpan d)
-> [WithSpan d Run]
-> PL.ProtoLine NonEmpty d
protoLine prev pfs rest = PL.ProtoLine pfs prev next
where
next = [] `fromMaybe` firstSpanBoxes rest
firstSpanBoxes :: [WithSpan d a] -> Maybe [RB.ResolvedBox d]
firstSpanBoxes xs = case xs of
[] -> Nothing
(WithSpan rs _) : _ -> Just $ RS.spanBoxes rs
lastSpanBoxes :: NonEmpty (WithSpan d a) -> [RB.ResolvedBox d]
lastSpanBoxes xs = case NonEmpty.last xs of
WithSpan rs _ -> RS.spanBoxes rs
-- | Treat a list of runs as a contiguous sequence, and split them into two
-- lists so that the first list contains as many non-whitespace characters as
-- possible without crossing a hard line break (typically after a newline
-- character).
--
-- If the input is non-empty and starts with a hard line break, then the first
-- output list will contain a run of zero characters. This can be used to
-- correctly size an empty line.
--
-- If there is a hard line break in the input, the run containing it will have
-- its `runHardBreak` set to `True`.
--
-- If there is no hard line break in the input, the first output list will
-- contain the whole input, and the second output list will be empty.
hardSplit :: NonEmpty (WithSpan d Run) ->
(NonEmpty (WithSpan d Run), [WithSpan d Run])
hardSplit runs = case reverse hSplits of
[] -> noSplit
(splitRuns : _) -> forcedSplit splitRuns
where
noSplit = (trim runs, [])
forcedSplit (runs1, runs2) = (markHard $ trim runs1, runs2)
markHard = mapLast markHard'
markHard' (WithSpan rs x) = WithSpan rs x { runHardBreak = True }
trim
= dropWhileStartCascade isStartSpace
. dropWhileEndCascade isEndSpace
. dropWhileEndCascade isNewline
-- TODO: Consider optimising.
-- We do not need to look for any line breaks further than the
-- shortest hard break.
hSplits = nonEmptyFsts $
-- from longest to shortest
splitTextsBy (map fst . filter isHard . runLineBreaks) runs
isHard (_, status) = status == BreakStatus.Hard
-- | Apply a function to the last element of the non-empty list.
mapLast :: (a -> a) -> NonEmpty a -> NonEmpty a
mapLast f xs = case NonEmpty.uncons xs of
(x, Nothing) -> f x :| []
(x, Just rest) -> NonEmpty.cons x $ mapLast f rest
-- | Treat a list of runs as a contiguous sequence,
-- and find all possible ways to split them into two non-empty lists,
-- using soft line break opportunities (typically after words) and then
-- using character boundaries.
--
-- Runs of zero characters will not be created. If line breaking would result
-- in a line that consists entirely of whitespace, this whitespace will be
-- skipped, so an empty line is not created.
--
-- The results in the form (prefix, suffix) will be ordered so that items
-- closer to the start of the list are preferred for line breaking, but without
-- considering overflows.
softSplits :: NonEmpty (WithSpan d Run) ->
[(NonEmpty (WithSpan d Run), [WithSpan d Run])]
softSplits runs = map (allowSndEmpty . trimFst) splits
where
trimFst (runs1, runs2) = (trim runs1, runs2)
trim
= dropWhileStartCascade isStartSpace
. dropWhileEndCascade isEndSpace
splits = lSplits ++ cSplits
lSplits = nonEmptyPairs $
splitTextsBy (map fst . runLineBreaks) runs
-- TODO: Consider optimising.
-- We do not need to look for character breaks further than the
-- shortest line break.
cSplits = nonEmptyPairs $
splitTextsBy (map fst . runCharacterBreaks) runs
-- | The suffix remaining after removing the longest prefix of the list for
-- which the predicate holds, except always including at least the last element
-- of the original list.
dropWhile1 :: (a -> Bool) -> NonEmpty a -> NonEmpty a
dropWhile1 p list = case NonEmpty.uncons list of
(_, Nothing) -> list
(x, Just xs) -> if p x
then dropWhile1 p xs
else list
-- | Calculate layout for multiple horizontal runs on the same line, without
-- any breaking.
layoutRunsH :: Functor f => f (WithSpan d Run) -> f (ProtoFragmentWithSpan d)
layoutRunsH runs = fmap layoutRunH runs
-- | Calculate layout for the given horizontal run and attach extra information.
layoutRunH :: WithSpan d Run -> ProtoFragmentWithSpan d
layoutRunH (WithSpan rs run) = WithSpan rs pf
where
pf = PF.protoFragmentH dir lvl vo glyphs hard
glyphs = shapeRun (WithSpan rs run)
dir = runDirection run
lvl = runLevel run
vo = verticalOffsets dir (RS.spanTextOptions rs)
hard = runHardBreak run
-- | Vertical offsets for the given fragment, with baseline set to 0.
verticalOffsets :: Direction -> TextOptions -> VO.VerticalOffsets
verticalOffsets dir opts = VO.VerticalOffsets
{ VO.layoutTop = ascent + topHalfLeading
, VO.fontTop = ascent
, VO.baseline = 0
, VO.fontBottom = - descent
, VO.layoutBottom = - descent - bottomHalfLeading
}
where
-- non-negative leading values iff `lineHeight` > `normalLineHeight`
leading = lineHeight - normalLineHeight
topHalfLeading = -((-leading) `div` 2)
bottomHalfLeading = leading `div` 2
-- `normalLineHeight` > 0 for horizontal fonts
normalLineHeight = ascent + descent
-- `ascent` >= 0 for horizontal fonts
ascent = ascender extents
-- `descent` >= 0 for horizontal fonts
descent = - descender extents
extents = fontExtentsForDir (textFont opts) (Just dir)
lineHeight = case textLineHeight opts of
Normal -> normalLineHeight
Absolute h -> h
-- | Vertical offsets for the given fragment, aligned recursively either to
-- the root box or the nearest box with line-relative alignment, whichever is
-- closer.
--
-- Note: The font extents are calculated using the same direction for the whole
-- ancestry path regardless of the actual direction of these boxes, but
-- this should not matter for text that is only horizontal.
verticalOffsetsRecursive :: Direction -> TextOptions -> [RB.ResolvedBox d] ->
(Maybe (RB.ResolvedBox d), VO.VerticalOffsets)
verticalOffsetsRecursive dir opts boxes = case boxes of
[] -> -- Inline content directly in the root box.
(Nothing, vo)
(b : bs) -> case boxVerticalAlignment $ RB.boxOptions b of
AlignLineTop -> (Just b, vo)
AlignLineBottom -> (Just b, vo)
AlignBaseline offset ->
let parentOpts = RB.boxParentTextOptions b
(anchor, parentVO) = verticalOffsetsRecursive dir parentOpts bs
in (anchor, VO.alignBaseline (VO.baseline parentVO + offset) vo)
where
vo = verticalOffsets dir opts
-- | Like `verticalOffsetsRecursive`, but also generate struts for every
-- ancestor box.
verticalOffsetsRecursiveStruts :: Direction -> TextOptions -> [RB.ResolvedBox d]
-> NonEmpty (Maybe (RB.ResolvedBox d), VO.VerticalOffsets)
verticalOffsetsRecursiveStruts dir opts [] =
verticalOffsetsRecursive dir opts [] :| []
verticalOffsetsRecursiveStruts dir opts boxes@(b : bs) =
verticalOffsetsRecursive dir opts boxes <|
verticalOffsetsRecursiveStruts dir (RB.boxParentTextOptions b) bs
-- | Calculate layout for the given run independently of its position.
shapeRun :: WithSpan d Run -> [(GlyphInfo, GlyphPos)]
shapeRun (WithSpan rs run) = shape font buffer features
where
font = textFont opts
buffer = defaultBuffer
{ text = Lazy.fromStrict $ runText run
, contentType = Just ContentTypeUnicode
, direction = Just $ runDirection run
, script = runScript run
, language = Just $ textLanguage opts
-- Perhaps counter-intuitively, the `beginsText` and `endsText`
-- flags refer to everything that "Data.Text.Glyphize" can see,
-- not just the current run.
--
-- Since all runs are cut from a single continuous `Text` that
-- represents the entire paragraph, and "Data.Text.Glyphize" peeks
-- at the whole underlying byte array, HarfBuzz will be able to see
-- both the beginning and the end of the paragraph at all times,
-- so these flags can always be set.
, beginsText = True
, endsText = True
}
features = []
opts = RS.spanTextOptions rs
runLineBreaks :: WithSpan d Run -> [(Int, BreakStatus.Line)]
runLineBreaks (WithSpan rs run) =
runBreaksFromSpan run $ RS.spanLineBreaks rs
runCharacterBreaks :: WithSpan d Run -> [(Int, ())]
runCharacterBreaks (WithSpan rs run) =
runBreaksFromSpan run $ RS.spanCharacterBreaks rs
-- | Constrain span breaks to a selected run and adjust offsets.
runBreaksFromSpan :: Run -> [(Int, a)] -> [(Int, a)]
runBreaksFromSpan run spanBreaks =
dropWhile (not . valid) $ subOffsetsDesc (runOffsetInSpan run) spanBreaks
where
valid (off, _) = off <= runLength
runLength = lengthWord8 $ getText run
-- | Predicate for characters that can be potentially removed from the
-- beginning of a line according to the CSS Text Module.
isStartSpace :: Char -> Bool
isStartSpace c = c `elem` [' ', '\t']
-- | Predicate for characters that can be potentially removed from the end of
-- a line according to the CSS Text Module.
isEndSpace :: Char -> Bool
isEndSpace c = c `elem` [' ', '\t', '\x1680']
-- | Predicate for characters that should be removed from the end of a line in
-- the case of a hard line break.
isNewline :: Char -> Bool
isNewline c = c == '\n'