-- | Implementation of paragraph layout, decoupled from external interfaces. module Data.Text.ParagraphLayout.Internal.Layout ( FragmentWithSpan , layoutAndAlignLines ) where import Data.Foldable (toList) import Data.Int (Int32) import Data.List (mapAccumL) import Data.List.NonEmpty (NonEmpty ((:|)), nonEmpty, (<|)) import qualified Data.List.NonEmpty as NonEmpty import Data.Maybe (catMaybes, fromMaybe) import Data.Text.Foreign (lengthWord8) import Data.Text.Glyphize ( Buffer (..) , ContentType (ContentTypeUnicode) , Direction (DirLTR, DirRTL) , FontExtents (..) , GlyphInfo , GlyphPos , defaultBuffer , fontExtentsForDir , shape ) import qualified Data.Text.ICU as BreakStatus (Line (Hard)) import qualified Data.Text.Lazy as Lazy import Data.Text.ParagraphLayout.Internal.AncestorBox import Data.Text.ParagraphLayout.Internal.ApplyBoxes import Data.Text.ParagraphLayout.Internal.BiDiReorder import Data.Text.ParagraphLayout.Internal.Break import Data.Text.ParagraphLayout.Internal.Fragment import Data.Text.ParagraphLayout.Internal.LineHeight import Data.Text.ParagraphLayout.Internal.ParagraphExtents import qualified Data.Text.ParagraphLayout.Internal.ProtoFragment as PF import qualified Data.Text.ParagraphLayout.Internal.ProtoLine as PL import Data.Text.ParagraphLayout.Internal.Rect import qualified Data.Text.ParagraphLayout.Internal.ResolvedBox as RB import qualified Data.Text.ParagraphLayout.Internal.ResolvedSpan as RS import Data.Text.ParagraphLayout.Internal.Run import Data.Text.ParagraphLayout.Internal.TextContainer import Data.Text.ParagraphLayout.Internal.TextOptions import Data.Text.ParagraphLayout.Internal.WithSpan -- This is redundant. -- TODO: Consider using `ResolvedSpan` as `fragmentUserData`, then swapping it -- for the actual `spanUserData` before returning it to the user. type ProtoFragmentWithSpan d = WithSpan d PF.ProtoFragment type FragmentWithSpan d = WithSpan d (Fragment d) type ProtoFragmentWithBoxes d = WithBoxes d (ProtoFragmentWithSpan d) -- | Create a multi-line layout from the given runs, splitting them as -- necessary to fit within the requested line width. -- -- The output is a flat list of fragments positioned in both dimensions. layoutAndAlignLines :: Int32 -> NonEmpty (WithSpan d Run) -> [FragmentWithSpan d] layoutAndAlignLines maxWidth runs = frags where frags = concatMap NonEmpty.toList fragsInLines (_, fragsInLines) = mapAccumL positionLineH originY numberedLines numberedLines = zip [1 ..] canonicalLines canonicalLines = fmap reorderProtoFragments logicalLines logicalLines = nonEmptyItems $ layoutLines maxWidth [] runs originY = paragraphOriginY reorderProtoFragments :: PL.ProtoLine NonEmpty d -> PL.ProtoLine NonEmpty d reorderProtoFragments pl@(PL.ProtoLine { PL.protoFragments = pfs }) = pl { PL.protoFragments = reorder pfs } nonEmptyItems :: Foldable t => t (PL.ProtoLine [] d) -> [PL.ProtoLine NonEmpty d] nonEmptyItems = catMaybes . map PL.nonEmpty . toList -- | Create a multi-line layout from the given runs, splitting them as -- necessary to fit within the requested line width. -- -- The output is a two-dimensional list of fragments positioned along the -- horizontal axis. layoutLines :: Int32 -> [RB.ResolvedBox d] -> NonEmpty (WithSpan d Run) -> NonEmpty (PL.ProtoLine [] d) layoutLines maxWidth openBoxes runs = case nonEmpty rest of -- Everything fits. We are done. Nothing -> fitting :| [] -- Something fits, the rest goes on the next line. Just runs' -> fitting <| layoutLines maxWidth openBoxes' runs' where (fitting, rest) = layoutAndWrapRunsH maxWidth openBoxes runs -- Update the list of open boxes using the logically last run on this -- line, if there is one. openBoxes' = openBoxes `fromMaybe` lastSpanBoxes (PL.protoFragments fitting) -- TODO: Allow a run across multiple spans (e.g. if they only differ by colour). -- | Position all the given horizontal fragments on the same line, -- using @originY@ as its top edge, and return the bottom edge for continuation. -- -- Glyphs will be aligned by their ascent line, similar to the behaviour of -- @vertical-align: top@ in CSS. -- -- TODO: For rich text, allow other types of vertical alignment. positionLineH :: Int32 -> (Int, PL.ProtoLine NonEmpty d) -> (Int32, NonEmpty (FragmentWithSpan d)) positionLineH originY (num, pl) = (nextY, frags) where nextY = maximum $ fmap y_min rects rects = fmap (\ (WithSpan _ r) -> fragmentRect r) frags (_, frags) = mapAccumL (positionFragmentH num originY) originX wpfs wpfs = PL.applyBoxes pl originX = paragraphOriginX -- | Position the given horizontal fragment on a line, -- using @originY@ as its top edge and @originX@ as its left edge, -- returning the X coordinate of its right edge for continuation. positionFragmentH :: Int -> Int32 -> Int32 -> ProtoFragmentWithBoxes d -> (Int32, FragmentWithSpan d) positionFragmentH line originY originX (WithBoxes lbs (WithSpan rs pf) rbs) = (nextX, WithSpan rs frag) where nextX = contentX + contentWidth + rightSpacing contentX = originX + leftSpacing contentWidth = PF.advance pf leftSpacing = totalLeftSpacing bs rightSpacing = totalRightSpacing bs frag = Fragment userData line bs rect (penX, penY) (PF.glyphs pf) userData = RS.spanUserData rs bs = ancestorBoxes lbs rbs rs rect = Rect contentX originY contentWidth (-lineHeight) penX = 0 penY = descent + leading `div` 2 - lineHeight lineHeight = case textLineHeight opts of Normal -> normalLineHeight Absolute h -> h leading = lineHeight - normalLineHeight normalLineHeight = ascent + descent ascent = ascender extents descent = - descender extents extents = fontExtentsForDir (textFont opts) (PF.direction pf) opts = RS.spanTextOptions rs ancestorBoxes :: [RB.ResolvedBox d] -> [RB.ResolvedBox d] -> RS.ResolvedSpan d -> [AncestorBox d] ancestorBoxes leftBoxes rightBoxes rs = map ancestorBox $ RS.spanBoxes rs where ancestorBox b = case RB.boxDirection b of DirLTR -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftSpacing = leftSpacing b , boxRightSpacing = rightSpacing b , boxStartSpacing = leftSpacing b , boxEndSpacing = rightSpacing b } DirRTL -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftSpacing = leftSpacing b , boxRightSpacing = rightSpacing b , boxStartSpacing = rightSpacing b , boxEndSpacing = leftSpacing b } _ -> AncestorBox { boxUserData = RB.boxUserData b , boxLeftSpacing = Nothing , boxRightSpacing = Nothing , boxStartSpacing = Nothing , boxEndSpacing = Nothing } leftSpacing b = if b `elem` leftBoxes then Just $ RB.boxLeftSpacing b else Nothing rightSpacing b = if b `elem` rightBoxes then Just $ RB.boxRightSpacing b else Nothing -- | Calculate layout for multiple horizontal runs, breaking them as necessary -- to fit as much content as possible without exceeding the maximum line width, -- and return the remaining runs to be placed on other lines. layoutAndWrapRunsH :: Int32 -> [RB.ResolvedBox d] -> NonEmpty (WithSpan d Run) -> (PL.ProtoLine [] d, [WithSpan d Run]) layoutAndWrapRunsH maxWidth prevOpenBoxes runs = NonEmpty.head $ validProtoLines where validProtoLines = dropWhile1 tooLong layouts tooLong (pl, _) = PL.width pl > maxWidth layouts = fmap fstToProtoLine splits fstToProtoLine (runs1, runs2) = (protoLine prevOpenBoxes (layoutRunsH runs1) runs2, runs2) -- TODO: Consider optimising. -- We do not need to look for soft breaks further than the -- shortest hard break. splits = hardSplit runs :| softSplits runs -- | Construct a `ProtoLine`, peeking at the text run on the following line -- to determine `nextOpenBoxes`. protoLine :: [RB.ResolvedBox d] -> [ProtoFragmentWithSpan d] -> [WithSpan d Run] -> PL.ProtoLine [] d protoLine prev pfs rest = PL.ProtoLine pfs prev next where next = [] `fromMaybe` firstSpanBoxes rest firstSpanBoxes :: [WithSpan d a] -> Maybe [RB.ResolvedBox d] firstSpanBoxes xs = case xs of [] -> Nothing (WithSpan rs _) : _ -> Just $ RS.spanBoxes rs lastSpanBoxes :: [WithSpan d a] -> Maybe [RB.ResolvedBox d] lastSpanBoxes xs = case reverse xs of [] -> Nothing (WithSpan rs _) : _ -> Just $ RS.spanBoxes rs -- | Treat a list of runs as a contiguous sequence, and split them into two -- lists so that the first list contains as many non-whitespace characters as -- possible without crossing a hard line break (typically after a newline -- character). -- -- If the input is non-empty and starts with a hard line break, then the first -- output list will contain a run of zero characters. This can be used to -- correctly size an empty line. -- -- If there is no hard line break in the input, the first output list will -- contain the whole input, and the second output list will be empty. hardSplit :: NonEmpty (WithSpan d Run) -> ([WithSpan d Run], [WithSpan d Run]) hardSplit runs = allowFstEmpty $ trimFst $ NonEmpty.last $ splits where trimFst (runs1, runs2) = (trim runs1, runs2) trim = trimTextsStartPreserve isStartSpace . trimTextsEndPreserve isEndSpace . trimTextsEndPreserve isNewline -- TODO: Consider optimising. -- We do not need to look for any line breaks further than the -- shortest hard break. splits = noSplit :| map allowSndEmpty hSplits noSplit = (runs, []) hSplits = -- from longest to shortest splitTextsBy (map fst . filter isHard . runLineBreaks) runs isHard (_, status) = status == BreakStatus.Hard -- | Treat a list of runs as a contiguous sequence, -- and find all possible ways to split them into two non-empty lists, -- using soft line break opportunities (typically after words) and then -- using character boundaries. -- -- Runs of zero characters will not be created. If line breaking would result -- in a line that consists entirely of whitespace, this whitespace will be -- skipped, so an empty line is not created. -- -- The results in the form (prefix, suffix) will be ordered so that items -- closer to the start of the list are preferred for line breaking, but without -- considering overflows. softSplits :: NonEmpty (WithSpan d Run) -> [([WithSpan d Run], [WithSpan d Run])] softSplits runs = map (allowSndEmpty . trimFst) splits where trimFst (runs1, runs2) = (trim runs1, runs2) trim = trimTextsStart isStartSpace . trimTextsEnd isEndSpace splits = lSplits ++ cSplits lSplits = splitTextsBy (map fst . runLineBreaks) runs -- TODO: Consider optimising. -- We do not need to look for character breaks further than the -- shortest line break. cSplits = splitTextsBy (map fst . runCharacterBreaks) runs allowFstEmpty :: (NonEmpty a, b) -> ([a], b) allowFstEmpty (a, b) = (NonEmpty.toList a, b) allowSndEmpty :: (a, NonEmpty b) -> (a, [b]) allowSndEmpty (a, b) = (a, NonEmpty.toList b) -- | The suffix remaining after removing the longest prefix of the list for -- which the predicate holds, except always including at least the last element -- of the original list. dropWhile1 :: (a -> Bool) -> NonEmpty a -> NonEmpty a dropWhile1 p list = case NonEmpty.uncons list of (_, Nothing) -> list (x, Just xs) -> if p x then dropWhile1 p xs else list -- | Calculate layout for multiple horizontal runs on the same line, without -- any breaking. layoutRunsH :: [WithSpan d Run] -> [ProtoFragmentWithSpan d] layoutRunsH runs = map layoutRunH runs -- | Calculate layout for the given horizontal run and attach extra information. layoutRunH :: WithSpan d Run -> ProtoFragmentWithSpan d layoutRunH (WithSpan rs run) = WithSpan rs pf where pf = PF.protoFragmentH dir glyphs glyphs = shapeRun (WithSpan rs run) dir = runDirection run -- | Calculate layout for the given run independently of its position. shapeRun :: WithSpan d Run -> [(GlyphInfo, GlyphPos)] shapeRun (WithSpan rs run) = shape font buffer features where font = textFont opts buffer = defaultBuffer { text = Lazy.fromStrict $ runText run , contentType = Just ContentTypeUnicode , direction = runDirection run , script = runScript run , language = Just $ textLanguage opts -- Perhaps counter-intuitively, the `beginsText` and `endsText` -- flags refer to everything that "Data.Text.Glyphize" can see, -- not just the current run. -- -- Since all runs are cut from a single continuous `Text` that -- represents the entire paragraph, and "Data.Text.Glyphize" peeks -- at the whole underlying byte array, HarfBuzz will be able to see -- both the beginning and the end of the paragraph at all times, -- so these flags can always be set. , beginsText = True , endsText = True } features = [] opts = RS.spanTextOptions rs runLineBreaks :: WithSpan d Run -> [(Int, BreakStatus.Line)] runLineBreaks (WithSpan rs run) = runBreaksFromSpan run $ RS.spanLineBreaks rs runCharacterBreaks :: WithSpan d Run -> [(Int, ())] runCharacterBreaks (WithSpan rs run) = runBreaksFromSpan run $ RS.spanCharacterBreaks rs -- | Constrain span breaks to a selected run and adjust offsets. runBreaksFromSpan :: Run -> [(Int, a)] -> [(Int, a)] runBreaksFromSpan run spanBreaks = dropWhile (not . valid) $ subOffsetsDesc (runOffsetInSpan run) spanBreaks where valid (off, _) = off < runLength runLength = lengthWord8 $ getText run -- | Predicate for characters that can be potentially removed from the -- beginning of a line according to the CSS Text Module. isStartSpace :: Char -> Bool isStartSpace c = c `elem` [' ', '\t'] -- | Predicate for characters that can be potentially removed from the end of -- a line according to the CSS Text Module. isEndSpace :: Char -> Bool isEndSpace c = c `elem` [' ', '\t', '\x1680'] -- | Predicate for characters that should be removed from the end of a line in -- the case of a hard line break. isNewline :: Char -> Bool isNewline c = c == '\n'