{-# LANGUAGE OverloadedStrings, FlexibleInstances #-} module Graphics.Rendering.Rect.CSS.Backgrounds (Backgrounds(..), Pattern(..), RadialShape(..), Resize(..), Length(..), resolveSize) where import Stylist (PropertyParser(..), parseUnorderedShorthand, parseOperands) import Data.CSS.Syntax.Tokens (Token(..), NumericValue(..)) import Data.Maybe (isJust, catMaybes) import Data.Text (Text) import Data.Scientific (scientific, toRealFloat) import Graphics.Rendering.Rect.CSS.Colour (ColourPallet, parseColour) import Data.Colour (AlphaColour, transparent) import Graphics.Rendering.Rect.Types (Rects(..), Rect(..)) data Backgrounds img = Backgrounds { pallet :: ColourPallet, background :: C, clip :: [Rects -> Rect], image :: [Pattern img], bgSize :: [Resize] } deriving (Eq, Show, Read) type C = AlphaColour Float data Pattern img = None | Img img | Linear Float [(C, Length)] | Radial RadialShape (Length, Length) [(C, Length)] deriving (Eq, Show, Read) data RadialShape = Circle | Ellipse deriving (Eq, Show, Read) -- We need to resolve images before we can compute the actual lengths! data Resize = Cover | Contain | Size Length Length deriving (Eq, Show, Read) data Length = Absolute Float | Scale Float | Auto deriving (Eq, Show, Read) instance PropertyParser (Backgrounds Text) where temp = Backgrounds { pallet = temp, background = transparent, clip = [borderBox], image = [None], bgSize = [Size Auto Auto] } inherit _ = temp priority _ = [] longhand _ self@Backgrounds{ pallet = c } "background-color" toks | Just ([], val) <- parseColour c toks = Just self { background = val } longhand _ self "background-clip" t | val@(_:_) <- parseCSSList inner t = Just self { clip = reverse val } where inner [Ident "content-box"] = Just contentBox inner [Ident "padding-box"] = Just paddingBox inner [Ident "border-box"] = Just borderBox inner [Ident "initial"] = Just borderBox -- To aid shorthand implementation. inner _ = Nothing longhand _ self@Backgrounds { pallet = pp } "background-image" t | val@(_:_) <- parseCSSList inner t = Just self { image = reverse val } where inner [Ident "none"] = Just None inner [Ident "initial"] = Just None inner [Url ret] = Just $ Img ret inner [Function "url", String ret, RightParen] = Just $ Img ret inner (Function "linear-gradient":toks) | Just cs@(_:_:_)<-colourStops pp (Comma:toks) = Just $ Linear pi cs inner (Function "linear-gradient":Dimension _ x unit:toks) | Just s <- lookup unit [("deg", pi/180), ("grad", pi/200), ("rad", 1), ("turn", 2*pi)], Just cs@(_:_:_) <- colourStops pp toks = Just $ Linear (f x*s) cs inner (Function "linear-gradient":Ident "to":Ident a:Ident b:toks) | Just angle<-corner a b, Just stops@(_:_:_)<-colourStops pp toks = Just $ Linear angle stops | Just angle<-corner b a, Just stops@(_:_:_)<-colourStops pp toks = Just $ Linear angle stops where corner "top" "right" = Just $ 0.25*pi corner "bottom" "right" = Just $ 0.75*pi corner "bottom" "left" = Just $ 1.25*pi corner "top" "left" = Just $ 1.75*pi corner _ _ = Nothing inner (Function "linear-gradient":Ident "to":Ident side:toks) | Just angle <- lookup side [ ("top", 0), ("right", pi/2), ("bottom", pi), ("left", pi*1.5)], Just cs@(_:_:_) <- colourStops pp toks = Just $ Linear angle cs inner (Function "radial-gradient":toks) | Just cs@(_:_:_) <- colourStops pp (Comma:toks) = Just $ Radial Ellipse center cs | Just (shp, org, ts) <- radArgs toks, Just cs@(_:_:_) <- colourStops pp ts = Just $ Radial shp org cs where center = (Scale 0.5, Scale 0.5) radArgs ts | (ts', Ident "at":posStops) <- break (== Ident "at") ts, Just (shape, _, []) <- radArgs ts', Just (org, stops) <- position posStops = Just (shape, org, stops) radArgs (Ident "circle":ts) = Just (Circle, center, ts) radArgs (Ident "ellipse":ts) = Just (Ellipse, center, ts) radArgs _ = Nothing position (x:y:ts) = position' x y ts *> position' y x ts position _ = Nothing position' x y ts = case ((case x of Ident "left" -> Scale 0 Ident "center" -> Scale 0.5 Ident "right" -> Scale 1 Percentage _ a -> Scale $ p a Dimension _ a "px" -> Absolute $ f a _ -> Auto, case y of Ident "top" -> Scale 0 Ident "center" -> Scale 0.5 Ident "right" -> Scale 1 Percentage _ a -> Scale $ p a Dimension _ a "px" -> Absolute $ f a _ -> Auto), ts) of ((Auto, _), _) -> Nothing ((_, Auto), _) -> Nothing ret -> Just ret inner _ = Nothing longhand _ self "background-size" t | val@(_:_) <- parseCSSList inner t = Just self { bgSize = reverse val } where -- TODO: Add shorthand support, after background-position. inner [x, y] | Just a <- l x, Just b <- l y = Just $ Size a b inner [Ident "contain"] = Just Contain inner [Ident "cover"] = Just Cover inner [Ident "auto"] = Just $ Size Auto Auto inner [Ident "initial"] = Just $ Size Auto Auto inner _ = Nothing -- NOTE: Leave lowering other units to CatTrap. l (Ident "auto") = Just Auto l (Dimension _ x "px") = Just $ Absolute $ f x l (Percentage _ x) = Just $ Scale $ p x l _ = Nothing longhand _ _ _ _ = Nothing -- The multi-layered shorthand is one source of parsing complexity. shorthand self "background" t = catProps $ reverse $ parseCSSList inner t where catProps [] = [] catProps (props:pss) | Just [Ident "initial"] <- "background-color" `lookup` catProps pss = map (catProp $ catProps pss) props | otherwise = [] -- Only allow background-color in bottommost layer. catProp _ ret@("background-color", _) = ret catProp bases (key, val) | Just base <- key `lookup` bases = (key, base ++ Comma:val) -- Shouldn't happen, `inner` expands all props at least to "initial"! | otherwise = (key, val) inner toks | ret@(_:_) <- parseUnorderedShorthand self [ "background-color", "background-clip", "background-image" ] toks = Just ret | otherwise = Nothing shorthand self key val | Just _ <- longhand self self key val = [(key, val)] | otherwise = [] colourStops :: ColourPallet -> [Token] -> Maybe [(AlphaColour Float, Length)] colourStops _ [RightParen] = Just [] colourStops cs (Comma:toks) | Just (Percentage _ x:toks', c) <- parseColour cs toks, Just ret <- colourStops cs toks' = Just $ (c, Scale $ p x):ret | Just (Dimension _ x "px":toks', c) <- parseColour cs toks, Just ret <- colourStops cs toks' = Just $ (c, Absolute $ f x):ret | Just (toks', c) <- parseColour cs toks, Just ret <- colourStops cs toks' = Just $ (c, Auto):ret colourStops cs (Comma:Percentage _ x:toks) | Just (toks', c) <- parseColour cs toks, Just ret <- colourStops cs toks' = Just $ (c, Scale $ p x):ret colourStops cs (Comma:Dimension _ x "px":toks) | Just (toks', c) <- parseColour cs toks, Just ret <- colourStops cs toks' = Just $ (c, Absolute $ f x):ret colourStops _ _ = Nothing parseCSSList :: ([Token] -> Maybe a) -> [Token] -> [a] parseCSSList cb toks | all isJust ret = catMaybes ret | otherwise = [] where ret = map cb $ concat $ splitList [Comma] $ parseOperands toks f :: NumericValue -> Float f (NVInteger x) = fromInteger x f (NVNumber x) = toRealFloat x p :: NumericValue -> Float p (NVInteger x) = fromInteger x / 100 -- Do the division while we're in base-10! p (NVNumber x) = toRealFloat (x/scientific 1 2) ------ --- Utils taken from HappStack ------ -- | Repeadly splits a list by the provided separator and collects the results splitList :: Eq a => a -> [a] -> [[a]] splitList _ [] = [] splitList sep list = h:splitList sep t where (h,t)=split (==sep) list -- | Split is like break, but the matching element is dropped. split :: (a -> Bool) -> [a] -> ([a], [a]) split filt s = (x,y) where (x,y')=break filt s y = if null y' then [] else tail y' ------ --- Dynamically-computed properties ------ resolveSize :: (Float, Float) -> (Float, Float) -> Resize -> (Float, Float) resolveSize (owidth, oheight) (width, height) Contain | width > owidth, height*sw > oheight, height > width = (width*sh, height*sh) | width > owidth = (width*sw, height*sw) | height > oheight = (width*sh, height*sh) | height > width = (width*sw, height*sw) | otherwise = (width*sh, height*sh) where sh = oheight/height sw = owidth/width resolveSize (owidth, oheight) (width, height) Cover | owidth > width, oheight > height*sw = (width*sh, height*sh) | oheight > height, owidth > width*sh = (width*sw, height*sw) | owidth > width = (width*sw, height*sw) | oheight > height = (width*sh, height*sh) | oheight > height*sw = (width*sh, height*sh) | owidth > width*sh = (width*sw, height*sw) | height > width = (width*sw, height*sw) | otherwise = (width*sh, height*sh) where sh = oheight/height sw = owidth/width resolveSize _ ret (Size Auto Auto) = ret resolveSize _ (width, height) (Size x y) = (x', y') where x' | Absolute ret <- x = ret | Scale s <- x = width*s | Auto <- x = y' * width/height y' | Absolute ret <- y = ret | Scale s <- y = height*s -- NOTE: If Auto,Auto case wasn't handled above this'd be an infinite loop. | Auto <- y = x' * height/width