{-# LANGUAGE TupleSections #-} -- | Sizes inline text & extracts positioned children, -- wraps Balkón for the actual logic. module Graphics.Layout.Inline(inlineMinWidth, inlineMin, inlineNatWidth, inlineHeight, inlineSize, inlineChildren, layoutSize, layoutChildren, positionChildren, fragmentSize, fragmentSize', fragmentPos, FragmentTree(..), positionSubtree, subtreeInner) where import Data.Text.ParagraphLayout.Rich (Paragraph(..), ParagraphOptions(..), Fragment(..), ParagraphLayout(..), AncestorBox(..), layoutRich) import Data.Text.ParagraphLayout.Rect (Rect(..), width, height, x_min, y_min) import Data.Text.Internal (Text(..)) import qualified Data.Text as Txt import Data.Char (isSpace) import Data.Int (Int32) import Graphics.Layout.Box (Size(..), CastDouble(..), fromDouble) import Graphics.Layout.CSS.Font (Font', hbUnit) -- | Convert from Harfbuzz units to device pixels as a Double hbScale = (/hbUnit) . fromIntegral -- | Convert from Harfbuzz units to device pixels as a Double or Length. c :: CastDouble a => Int32 -> a c = fromDouble . hbScale -- | Compute minimum width for some richtext. inlineMinWidth :: Paragraph a -> Double inlineMinWidth self = hbScale $ width $ layoutRich' self 0 -- | Compute minimum width & height for some richtext. inlineMin :: (CastDouble x, CastDouble y) => Paragraph a -> Size x y inlineMin self = Size (c $ width rect) (c $ height rect) where rect = layoutRich' self 0 -- | Compute natural (single-line) width for some richtext. inlineNatWidth :: Paragraph a -> Double inlineNatWidth self = hbScale $ width $ layoutRich' self maxBound -- | Compute height for rich text at given width. inlineHeight :: Double -> Paragraph a -> Double inlineHeight width self = hbScale $ height $ layoutRich' self $ round (hbUnit * width) -- | Compute width & height of some richtext at configured width. inlineSize :: (CastDouble x, CastDouble y) => Paragraph a -> Size x y inlineSize self = layoutSize $ layoutRich self -- | Retrieve children out of some richtext, -- associating given userdata with them. inlineChildren :: Eq a => Paragraph a -> [FragmentTree a] inlineChildren self = layoutChildren $ layoutRich self -- | Retrieve a laid-out paragraph's rect & convert to CatTrap types. layoutSize :: (CastDouble x, CastDouble y) => ParagraphLayout a -> Size x y layoutSize self = Size (c $ width r) (c $ height r) where r = paragraphRect self -- | Retrieve a laid-out paragraph's children & associate with given userdata. layoutChildren :: Eq a => ParagraphLayout a -> [FragmentTree a] layoutChildren self = reconstructTree self -- | Layout a paragraph at given width & retrieve resulting rect. layoutRich' :: Paragraph a -> Int32 -> Rect Int32 layoutRich' (Paragraph a b c d) width = paragraphRect $ layoutRich $ Paragraph a b c d { paragraphMaxWidth = width } -- | Retrieve the rect for a fragment & convert to CatTrap types. fragmentSize :: (CastDouble x, CastDouble y) => FragmentTree a -> Size x y fragmentSize (Branch _ _) = Size (c 0) (c 0) -- FIXME fragmentSize (Leaf self) = Size (c $ width r) (c $ height r) where r = fragmentRect self -- | Variant of `fragmentSize` asserting to the typesystem that both fields -- of the resulting `Size` are of the same type. fragmentSize' :: CastDouble x => FragmentTree a -> Size x x fragmentSize' = fragmentSize -- Work around for typesystem. -- | Retrieve the position of a fragment. fragmentPos :: (Double, Double) -> Fragment a -> (Double, Double) fragmentPos (x, y) self = (x + hbScale (x_min r), y + hbScale (y_min r)) where r = fragmentRect self -- | Alter userdata to hold positions. positionChildren :: (Double, Double) -> ParagraphLayout (a, b, c) -> ParagraphLayout (a, b, ((Double, Double), c)) positionChildren pos self = self { paragraphFragments = [Fragment (a, b, (fragmentPos pos frag, c)) d [] f g h | frag@(Fragment (a, b, c) d _ f g h) <- paragraphFragments self] } data FragmentTree x = Branch (AncestorBox x) [FragmentTree x] | Leaf (Fragment x) reconstructTree :: Eq x => ParagraphLayout x -> [FragmentTree x] reconstructTree ParagraphLayout { paragraphFragments = frags } = reconstructTree' [frag { fragmentAncestorBoxes = reverse $ fragmentAncestorBoxes frag } | frag <- frags] reconstructTree' :: Eq x => [Fragment x] -> [FragmentTree x] reconstructTree' (self@Fragment { fragmentAncestorBoxes = [] }:frags) = Leaf self:reconstructTree' frags reconstructTree' frags@(Fragment { fragmentAncestorBoxes = branch:_ }:_) = Branch branch (reconstructTree' [ child { fragmentAncestorBoxes = ancestors } | child@Fragment { fragmentAncestorBoxes = _:ancestors } <- childs]) :reconstructTree' sibs where (childs, sibs) = span sameBranch frags sameBranch Fragment { fragmentAncestorBoxes = branch':_ } = branch == branch' sameBranch Fragment { fragmentAncestorBoxes = [] } = False reconstructTree' [] = [] positionSubtree :: (Double, Double) -> FragmentTree (a, b, c) -> FragmentTree (a, b, ((Double, Double), c)) positionSubtree pos (Branch (AncestorBox (a, b, c) d e f g) childs) = Branch (AncestorBox (a, b, (pos, c)) d e f g) $ map (positionSubtree pos) childs positionSubtree pos (Leaf (Fragment (a, b, c) d _ f g h)) = Leaf (Fragment (a, b, (pos, c)) d [] f g h) subtreeInner :: FragmentTree (a, b, c) -> c subtreeInner (Branch AncestorBox { boxUserData = (_, _, ret) } _) = ret subtreeInner (Leaf Fragment { fragmentUserData = (_, _, ret) }) = ret